Abstract
Population-based methods are used to deal with computationally difficult optimization problems. The outcome of the current research effort in the field of the population-based optimization can be broadly categorized as a new, stand-alone, P-B metaheuristics, ensemble P-B metaheuristics including multi-population and multi-agent approaches, new hybrid approaches involving P-B metaheuristics, and improvements and successful modifications of the earlier known P-B metaheuristics. Research results obtained during the last few years in each of the above categories are briefly discussed. The last part of the paper includes comments on directions of future research in the population-based optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abedinia, O., Amjady, N., Ghasemi, A.: A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5), 97–116 (2016). https://doi.org/10.1002/cplx.21634
Al-Betar, M.A., Awadallah, M.A.: Island bat algorithm for optimization. Expert Syst. Appl. 107, 126–145 (2018). https://doi.org/10.1016/j.eswa.2018.04.024
Antonio, L.M., CoelloCoello, C.A.: Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art. IEEE Trans. Evol. Comput. 22(6), 851–865 (2018). https://doi.org/10.1109/TEVC.2017.2767023
Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016). https://doi.org/10.1016/j.compstruc.2016.03.001
Baykasoglu, A., Akpinar, S.: Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–part 1: unconstrained optimization. Appl. Soft Comput. 56, 520–540 (2017). https://doi.org/10.1016/j.asoc.2015.10.036
Boussaï, I., Lepagnot, D.J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013). https://doi.org/10.1016/j.ins.2013.02.041
Chen, K., Zhou, F., Yin, L., Wang, S., Wang, Y., Wan, F.: A hybrid particle swarm optimizer with sine cosine acceleration coefficients. Inf. Sci. 422, 218–241 (2018). https://doi.org/10.1016/j.ins.2017.09.015
Chen, K., Zhou, F., Wang, Y., Yin, L.: An ameliorated particle swarm optimizer for solving numerical optimization problems. Appl. Soft Comput. J. 73, 482–496 (2018). https://doi.org/10.1016/j.asoc.2018.09.007
Cheng, R., Bai, Y., Zhao, Y., Tan, X., Xu, T.: Improved fireworks algorithm with information exchange for function optimization. Knowl.-Based Syst. 163, 82–90 (2019). https://doi.org/10.1016/j.knosys.2018.08.016
Civicioglu, P.: Artificial cooperative search algorithm for numerical optimization problems. Inf. Sci. 229, 58–76 (2013). https://doi.org/10.1016/j.ins.2012.11.013
Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013). https://doi.org/10.1016/j.amc.2013.02.017
Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436
Fausto, F., Cuevas, E., Valdivia, A., González, A.: A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160, 39–55 (2017). https://doi.org/10.1016/j.biosystems.2017.07.010
Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway (1995)
Gan, C., Cao, W., Wu, M., Chen, X.: A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Syst. Appl. 104, 202–212 (2018). https://doi.org/10.1016/j.eswa.2018.03.015
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Guohua, W., Shen, X., Li, H., Chen, H., Lin, A., Suganthan, P.: Ensemble of differential evolution variants. Inf. Sci. 423, 172–186 (2018). https://doi.org/10.1016/j.ins.2017.09.053
Guohua, W., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms – a survey. Swarm Evol. Comput. 44, 695–711 (2019). https://doi.org/10.1016/j.swevo.2018.08.015
Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013). https://doi.org/10.1016/j.ins.2012.08.023
He, S., Zhu, L., Wang, L., Yu, L., Yao, C.: A modified gravitational search algorithm for function optimization. IEEE Access 7, 5984–5993 (2019). https://doi.org/10.1109/ACCESS.2018.2889854
Jaderyan, M., Khotanlou, H.: Virulence optimization algorithm. Appl. Soft Comput. 43, 596–618 (2016). https://doi.org/10.1016/j.asoc.2016.02.038
Jahani, E., Chizari, M.: Tackling global optimization problems with a novel algorithm–mouth Brooding Fish algorithm. Appl. Soft Comput. 62, 987–1002 (2018). https://doi.org/10.1016/j.asoc.2017.09.035
Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019). https://doi.org/10.1016/j.swevo.2018.02.013
Javidy, B., Hatamlou, A., Mirjalili, S.: Ions motion algorithm for solving optimization problems. Appl. Soft Comput. 32, 72–79 (2015). https://doi.org/10.1016/j.asoc.2015.03.035
Kashan, A.H.: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 16, 171–200 (2014). https://doi.org/10.1016/j.asoc.2013.12.005
Kashan, A.H.: A new metaheuristic for optimization: optics inspired optimization (OIO). Comput. Oper. Res. 55, 99–125 (2015). https://doi.org/10.1016/j.cor.2014.10.011
Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013). https://doi.org/10.1016/j.advengsoft.2013.03.004
Kaveh, A., Dadras, A.: A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv. Eng. Softw. 110, 69–84 (2017). https://doi.org/10.1016/j.advengsoft.2017.03.014
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks. IEEE Xplore (1995). https://doi.org/10.1109/icnn.1995.488968
Koohi, S.Z., Hamid, N.A.W.A., Othman, M., Ibragimov, G.: Raccoon optimization algorithm. IEEE Access 7, 5383–5399 (2019). https://doi.org/10.1109/ACCESS.2018.2882568
Kommadath, R., Dondeti, J., Kotecha, P.: Benchmarking JAYA and sine cosine algorithm on real parameter bound constrained single objective optimization problems (CEC2016). In: ISMSI 2017, Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Hong Kong, pp. 31–34 (2017). https://doi.org/10.1145/3059336.3059363
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Boston (1992)
Li, J., Tan, Y.: The bare bones fireworks algorithm: a minimalist global optimizer. Appl. Soft Comput. 62, 454–462 (2018). https://doi.org/10.1016/j.asoc.2017.10.046
Li, M.D., Zhao, H., Weng, X.W., Han, T.: A novel nature-inspired algorithm for optimization: virus colony search. Adv. Eng. Softw. 92, 65–88 (2016). https://doi.org/10.1016/j.advengsoft.2015.11.004
Lin, J., Zhonga, Y., Li, E., Lina, X., Zhang, H.: Multi-agent simulated annealing algorithm with parallel adaptive multiple sampling for protein structure prediction in AB off-lattice model. Appl. Soft Comput. 62, 491–503 (2018). https://doi.org/10.1016/j.asoc.2017.09.037
Ma, H., Shen, S., Yu, M., Yang, Z., Fei, M., Zhou, H.: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey. Swarm Evol. Comput. 44, 365–387 (2019). https://doi.org/10.1016/j.swevo.2018.04.011
Mahdavi, S., Rahnamayan, S., Mahdavi, A.: Majority voting for discrete population-based optimization algorithms. Soft Comput. 23, 1–18 (2019). https://doi.org/10.1007/s00500-018-3530-1
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9
Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1
Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007
Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016). https://doi.org/10.1007/s00521-015-1870-7
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002
Moghdani, R., Salimifard, K.: Volleyball premier league algorithm. Appl. Soft Comput. 64, 161–185 (2018). https://doi.org/10.1016/j.asoc.2017.11.043
Nenavath, H., Jatoth, R.K.: Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 62, 1019–1043 (2018). https://doi.org/10.1016/j.asoc.2017.09.039
Nematollahi, A.F., Rahiminejad, A., Vahidi, B.: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl. Soft Comput. 59, 596–621 (2017). https://doi.org/10.1016/j.asoc.2017.06.033
Ozsoydan, F.B., Baykasoglu, A.: Quantum firefly swarms for multimodal dynamic optimization problems. Expert Syst. Appl. 115, 189–199 (2019). https://doi.org/10.1016/j.eswa.2018.08.007
Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013). https://doi.org/10.1016/j.asoc.2012.11.026
Qi, X., Zhu, Y., Zhang, H.: A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 23, 226–239 (2017). https://doi.org/10.1016/j.jocs.2017.06.003
Sato, T., Hagiwara, M.: Bee system: finding solution by a concentrated search. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, pp. 3954–3959 (1997)
Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004
Saxena, A., Kumar, R., Das, S.: β-chaotic map enabled grey wolf optimizer. Appl. Soft Comput. J. 75, 84–85 (2019). https://doi.org/10.1016/j.asoc.2018.10.044
Shareef, H., Ibrahim, A.A., Mutlag, A.H.: Lightning search algorithm. Appl. Soft Comput. 36, 315–333 (2015). https://doi.org/10.1016/j.asoc.2015.07.028
Sharafi, Y., Khanesar, M.A., Teshnehlab, M.: COOA: competitive optimization algorithm. Swarm Evol. Comput. 30, 39–63 (2016). https://doi.org/10.1016/j.swevo.2016.04.002
Singh, N., Singh, S.B.: A novel hybrid GWO-SCA approach for optimization problems. Eng. Sci. Technol. Int. J. 20, 1586–1601 (2017). https://doi.org/10.1016/j.jestch.2017.11.001
Skakovski, A., Jedrzejowicz, P.: An Island-based differential evolution algorithm with the multi-size populations. Expert Syst. Appl. (2019) https://doi.org/10.1016/j.eswa.2019.02.027
Tabari, A., Ahmad, A.: A new optimization method: electro-search algorithm. Comput. Chem. Eng. 103, 1–11 (2017). https://doi.org/10.1016/j.compchemeng.2017.01.046
Tang, D., Dong, S., Jiang, Y., Li, H., Huang, Y.: ITGO: invasive tumor growth optimization algorithm. Appl. Soft Comput. 36, 670–698 (2015). https://doi.org/10.1016/j.asoc.2015.07.045
Uymaz, S.A., Tezel, G., Yel, E.: Artificial algae algorithm (AAA) for nonlinear global optimization. Appl. Soft Comput. 31, 153–171 (2015). https://doi.org/10.1016/j.asoc.2015.03.003
Wang, J., Zhang, W., Zhang, J.: Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans. Cybern. 46(12), 2848–2861 (2016). https://doi.org/10.1109/tcyb.2015.2490669
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893
Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)
Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3, 24–36 (2016). https://doi.org/10.1016/j.jcde.2015.06.003
Ye, W., Feng, W., Fan, S.: A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl. Soft Comput. 61, 832–843 (2017). https://doi.org/10.1016/j.asoc.2017.08.051
Yu, Y., Gao, S., Cheng, S., Wang, Y., Song, S., Yuan, F.: CBSO: a memetic brain storm optimization with chaotic local search. Memetic Comput. 10, 353–367 (2018). https://doi.org/10.1007/s12293-017-0247-0
Yong, W., Tao, W., Cheng-Zhi, Z., Hua-Juan, H.: A new stochastic optimization approach dolphin swarm optimization algorithm. Int. J. Comput. Intell. Appl. 15(2), 1650011 (2016). https://doi.org/10.1142/S1469026816500115
Zhang, Q., Wang, R., Yang, J., Ding, K., Li, Y., Hu, J.: Collective decision optimization algorithm: a new heuristic optimization method. Neurocomputing 221, 123–137 (2017). https://doi.org/10.1016/j.neucom.2016.09.068
Zhang, J., Xiao, M., Gao, L., Pan, Q.: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 63, 464–490 (2018). https://doi.org/10.1016/j.apm.2018.06.036
Zhang, W., Gao, K., Zhang, W., Wang, X., Zhang, Q., Wang, H.: A hybrid clonal selection algorithm with modified combinatorial recombination and success-history based adaptive mutation for numerical optimization. Appl. Intell. 49, 819–836 (2019). https://doi.org/10.1007/s10489-018-1291-2
Zheng, L.M., Zhang, S.X., Tang, K.S., Zheng, S.Y.: Differential evolution powered by collective information. Inf. Sci. 399, 13–29 (2017). https://doi.org/10.1016/j.ins.2017.02.055
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jedrzejowicz, P. (2019). Current Trends in the Population-Based Optimization. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-28377-3_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28376-6
Online ISBN: 978-3-030-28377-3
eBook Packages: Computer ScienceComputer Science (R0)