[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applying ML Algorithms to Video Game AI

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11683))

Included in the following conference series:

  • 2071 Accesses

Abstract

In this paper a comparison of selected algorithms used to learn intelligent behavior of characters in video games was presented. The experiment environment was created using Unity3D and TensorFlow. After brief description of the algorithms, the comparison of results is presented for three algorithms: Genetic Algorithm, Deep Q-Learning and Actor-Critic Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)

    Article  Google Scholar 

  2. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms. Automatica 45(11), 2471–2482 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cho, B.H., Park, C.J., Yang, K.H.: Comparison of AI techniques for fighting action games - genetic algorithms/neural networks/evolutionary neural networks. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) ICEC 2007. LNCS, vol. 4740, pp. 55–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74873-1_8

    Chapter  Google Scholar 

  4. Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20042-7_33

    Chapter  Google Scholar 

  5. Kopel, M., Hajas, T.: Implementing AI for non-player characters in 3D video games. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 610–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_57

    Chapter  Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  7. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.: Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581 (2015)

  8. Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games, vol. 2. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-63519-4

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kopel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kopel, M., Pociejowski, A. (2019). Applying ML Algorithms to Video Game AI. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics