Abstract
In this paper a comparison of selected algorithms used to learn intelligent behavior of characters in video games was presented. The experiment environment was created using Unity3D and TensorFlow. After brief description of the algorithms, the comparison of results is presented for three algorithms: Genetic Algorithm, Deep Q-Learning and Actor-Critic Algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279 (2013)
Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms. Automatica 45(11), 2471–2482 (2009)
Cho, B.H., Park, C.J., Yang, K.H.: Comparison of AI techniques for fighting action games - genetic algorithms/neural networks/evolutionary neural networks. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) ICEC 2007. LNCS, vol. 4740, pp. 55–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74873-1_8
Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20042-7_33
Kopel, M., Hajas, T.: Implementing AI for non-player characters in 3D video games. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 610–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_57
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.: Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581 (2015)
Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games, vol. 2. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-63519-4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kopel, M., Pociejowski, A. (2019). Applying ML Algorithms to Video Game AI. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-28377-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28376-6
Online ISBN: 978-3-030-28377-3
eBook Packages: Computer ScienceComputer Science (R0)