[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Mandatory Concepts for Knowledge Discovery and Data Structuring

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Abstract

A data scientist could apply several machine learning approaches in order to discover valuable knowledge from the data. While applying several techniques, he might discover that some pieces of knowledge are invariant, what ever the technique he used. We consider such knowledge as mandatory concepts, i.e., unavoidable knowledge to be discovered. As interesting property, a mandatory concept is characterized by a non-shared isolated point, that relates pieces of data, e.g., an object to a property, a document to specific words, an image to a specific topic, etc. Hence, the isolated points allow to make the distinction between the concepts. In this paper, we present a new approach for mandatory concepts extraction by making a level-based properties composition. Hence, the N-Composites isolated points are identified and constitute a key element for mandatory concept localization. We experiment our new algorithm by considering the coverage quality metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/.

References

  1. Barbut, M., Monjardet, B.: Ordre et classification. Algèbre et Combinatoire. Hachette, Tome II (1970)

    Google Scholar 

  2. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal non-redundant association rules using frequent closed itemsets. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-4_65

    Chapter  Google Scholar 

  3. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–10 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elloumi, S., Ferjani, F., Jaoua, A.: Using minimal generators for composite isolated point extraction and conceptual binary relation coverage: application for extracting relevant textual features. Inform. Sci. 336, 129–144 (2016)

    Article  Google Scholar 

  5. Ferjani, F., Elloumi, S., Jaoua, A., Ben Yahia, S., Ismail, S., Ravan, S.: Formal context coverage based on isolated labels: an efficient solution for text feature extraction. Inform. Sci. 188, 198–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  8. Birkhoff, G.: Lattice Theory, 1st edn. American Mathematical Society, Providence (1965)

    MATH  Google Scholar 

  9. Godin, R., Mineau, G.W., Missaoui, R., Mili, H.: Méthodes de Classification Conceptuelle Basées sur le Treillis de Galois et Applications. Revue d’intelligence Artificielle 9(2), 105–137 (1995)

    Google Scholar 

  10. Jaoua, A., Elloumi, S., Hasnah, A., Jaam, J., Nafkha, I.: Discovering regularities in databases using canonical decomposition of binary relations. J. Relational Methods Comput. Sci. (JoRMiCS) 1, 217–234 (2004)

    Google Scholar 

  11. Kcherif, R., Gammoudi, M., Jaoua, A.: Using difunctional relations in information organization. Inf. Sci. 125, 153–166 (2000)

    Article  MATH  Google Scholar 

  12. Mouakher, A., Ben Yahia, S.: Anthropocentric visualisation of optimal cover of association rules. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proceedings of the 7th International Conference on Concept Lattices and Their Applications (CLA 2010), Sevilla, Spain, pp. 211–222, October 2010

    Google Scholar 

  13. Bourhfir, N.B., Gammoudi, C., Jaoua, A., Thanh, N.L., Reguig, M.: Décomposition rectangulaire optimale d’une relation binaire: application aux bases de données documentaires. INFOR Inf. Syst. Oper. Res. 32(1), 33–54 (1994)

    MATH  Google Scholar 

  14. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inform. Syst. J. 24(1), 25–46 (1999)

    MATH  Google Scholar 

  15. Paul, G., Scott, D.: New coupling and cohesion metrics for evaluation of software component reusability. In: Proceedings of the 9th International Conference for Young Computer Scientists (ICYCS 2008), Hunan, China, pp. 1181–1186, 18–21 November 2008

    Google Scholar 

  16. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013). https://doi.org/10.1016/j.eswa.2013.05.009

    Article  Google Scholar 

  17. Riguet, J.: Relations binaires, fermetures et correspondances de galois. Bull. Soc. Math. France 78, 114–155 (1948)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was made possible by the NPRP grant #10-0205-170346 from the QNRF (Qatar) and to the Astra funding program Grant 2014-2020.4.01.16-032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Elloumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elloumi, S., Ben Yahia, S., Al Ja’am, J. (2019). Using Mandatory Concepts for Knowledge Discovery and Data Structuring. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27618-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27617-1

  • Online ISBN: 978-3-030-27618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics