[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discovering Partial Periodic High Utility Itemsets in Temporal Databases

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11707))

Included in the following conference series:

Abstract

High Utility Itemset Mining (HUIM) is an important model with many real-world applications. Given a (non-binary) transactional database and an external utility database, the aim of HUIM is to discover all itemsets within the data that satisfy the user-specified minimum utility (minUtil) constraint. The popular adoption and successful industrial application of HUIM has been hindered by the following two limitations: (i) HUIM does not allow external utilities of items to vary over time and (ii) HUIM algorithms are inadequate to find recurring customer purchase behavior. This paper introduces a flexible model of Partial Periodic High Utility Itemset Mining (PPHUIM) to address these two problems. The goal of PPHUIM is to discover only those interesting high utility itemsets that are occurring at regular intervals in a given temporal database. An efficient depth-first search algorithm, called PPHUI-Miner (Partial Periodic High Utility Itemset-Miner), has been proposed to enumerate all partial periodic high-utility itemsets in temporal databases. Experimental results show that the proposed algorithm is efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L.: PHM: mining periodic high-utility itemsets. In: Perner, P. (ed.) ICDM 2016. LNCS (LNAI), vol. 9728, pp. 64–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41561-1_6

    Chapter  Google Scholar 

  2. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  3. Gan, W., Lin, J.C., Fournier-Viger, P., Chao, H., Hong, T., Fujita, H.: A survey of incremental high-utility itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(2), 1–23 (2018)

    Google Scholar 

  4. Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Philip, S.Y.: HUOPM: high-utility occupancy pattern mining. IEEE Trans. Cybern. (2019)

    Google Scholar 

  5. Uday Kiran, R., Yashwanth Reddy, T., Fournier-Viger, P., Toyoda, M., Krishna Reddy, P., Kitsuregawa, M.: Efficiently finding high utility-frequent itemsets using cutoff and suffix utility. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 191–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_15

    Chapter  Google Scholar 

  6. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic itemsets in temporal databases. In: Proceedings of the 29th SSDBM, p. 30. ACM (2017)

    Google Scholar 

  7. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach for mining high utility itemsets. KAIS 38(1), 85–107 (2014)

    Google Scholar 

  8. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM CIKM, pp. 55–64. ACM (2012)

    Google Scholar 

  9. Liu, Y., Liao, W.k., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: PAKDD, pp. 689–695 (2005)

    Chapter  Google Scholar 

  10. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_24

    Chapter  Google Scholar 

  11. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. TKDE 25(8), 1772–1786 (2013)

    Google Scholar 

  12. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: SIAM, pp. 482–486 (2004)

    Google Scholar 

  13. Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. KAIS 51(2), 595–625 (2017)

    Google Scholar 

  14. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W., Tseng, V.S.: Efficient mining of high-utility sequential rules. In: Perner, P. (ed.) MLDM 2015. LNCS (LNAI), vol. 9166, pp. 157–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21024-7_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Uday Kiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yashwanth Reddy, T., Kiran, R.U., Toyoda, M., Krishna Reddy, P., Kitsuregawa, M. (2019). Discovering Partial Periodic High Utility Itemsets in Temporal Databases. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27618-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27617-1

  • Online ISBN: 978-3-030-27618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics