Abstract
High Utility Itemset Mining (HUIM) is an important model with many real-world applications. Given a (non-binary) transactional database and an external utility database, the aim of HUIM is to discover all itemsets within the data that satisfy the user-specified minimum utility (minUtil) constraint. The popular adoption and successful industrial application of HUIM has been hindered by the following two limitations: (i) HUIM does not allow external utilities of items to vary over time and (ii) HUIM algorithms are inadequate to find recurring customer purchase behavior. This paper introduces a flexible model of Partial Periodic High Utility Itemset Mining (PPHUIM) to address these two problems. The goal of PPHUIM is to discover only those interesting high utility itemsets that are occurring at regular intervals in a given temporal database. An efficient depth-first search algorithm, called PPHUI-Miner (Partial Periodic High Utility Itemset-Miner), has been proposed to enumerate all partial periodic high-utility itemsets in temporal databases. Experimental results show that the proposed algorithm is efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L.: PHM: mining periodic high-utility itemsets. In: Perner, P. (ed.) ICDM 2016. LNCS (LNAI), vol. 9728, pp. 64–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41561-1_6
Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9
Gan, W., Lin, J.C., Fournier-Viger, P., Chao, H., Hong, T., Fujita, H.: A survey of incremental high-utility itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(2), 1–23 (2018)
Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Philip, S.Y.: HUOPM: high-utility occupancy pattern mining. IEEE Trans. Cybern. (2019)
Uday Kiran, R., Yashwanth Reddy, T., Fournier-Viger, P., Toyoda, M., Krishna Reddy, P., Kitsuregawa, M.: Efficiently finding high utility-frequent itemsets using cutoff and suffix utility. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 191–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_15
Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic itemsets in temporal databases. In: Proceedings of the 29th SSDBM, p. 30. ACM (2017)
Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach for mining high utility itemsets. KAIS 38(1), 85–107 (2014)
Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM CIKM, pp. 55–64. ACM (2012)
Liu, Y., Liao, W.k., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: PAKDD, pp. 689–695 (2005)
Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_24
Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. TKDE 25(8), 1772–1786 (2013)
Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: SIAM, pp. 482–486 (2004)
Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. KAIS 51(2), 595–625 (2017)
Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W., Tseng, V.S.: Efficient mining of high-utility sequential rules. In: Perner, P. (ed.) MLDM 2015. LNCS (LNAI), vol. 9166, pp. 157–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21024-7_11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yashwanth Reddy, T., Kiran, R.U., Toyoda, M., Krishna Reddy, P., Kitsuregawa, M. (2019). Discovering Partial Periodic High Utility Itemsets in Temporal Databases. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-27618-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27617-1
Online ISBN: 978-3-030-27618-8
eBook Packages: Computer ScienceComputer Science (R0)