[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trajectory Similarity Join for Spatial Temporal Database

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11707))

Included in the following conference series:

  • 961 Accesses

Abstract

The trajectory similarity join aims to find similar trajectory pairs from two large collections of trajectories. This join targets applications such as trajectory near-duplicate detection, ridesharing recommendation and so on. Extensive works have been conducted on addressing this join. However, most of them only focus on spatial dimension without combining temporal range together. To address problem, this paper proposes a novel two-level grid index which takes both spatial and temporal range into account when processing spatial-temporal similarity join, and signature based dynamic grid warping (SDGW) approach to evaluate the spatial similarity for trajectory pairs. Some pruning approaches are developed to improve the query processing. In addition, extensive experiments are conducted to verify the efficiency and scalability of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.uber.com/.

  2. 2.

    https://lab-work.github.io/data/.

References

  1. Assent, I., Wichterich, M., Krieger, R., Kremer, H., Seidl, T.: Anticipatory DTW for efficient similarity search in time series databases. Proc. VLDB 2(1), 826–837 (2009)

    Article  Google Scholar 

  2. Bakalov, P., Hadjieleftheriou, M., Keogh, E.J., Tsotras, V.J.: Efficient trajectory joins using symbolic representation. In: International Conference on Mobile Data Management (2005)

    Google Scholar 

  3. Bakalov, P., Tsotras, V.J.: Continuous spatiotemporal trajectory joins. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN 2006. LNCS, vol. 4540, pp. 109–128. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79996-2_7

    Chapter  Google Scholar 

  4. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency study. In: International Conference on Management of Data, pp. 255–266. Association for Computing Machinery Special Interest Group (2010)

    Google Scholar 

  5. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: IEEE International Conference on Data Engineering (2007)

    Google Scholar 

  6. Hui, D., Trajcevski, G., Scheuermann, P.: Efficient similarity join of large sets of moving object trajectories. In: International Symposium on Temporal Representation and Reasoning (2008)

    Google Scholar 

  7. Lei, C., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proceedings of the VLDB, pp. 792–803 (2004)

    Google Scholar 

  8. Lei, C., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502 (2005)

    Google Scholar 

  9. Lin, B., Su, J.: Shapes based trajectory queries for moving objects, pp. 21–30 (2005)

    Google Scholar 

  10. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments. Decis. Support Syst. 74(C), 12–32 (2015)

    Article  Google Scholar 

  11. Morse, M.D., Patel, J.M.: An efficient and accurate method for evaluating time series similarity. In: ACM SIGMOD, pp. 569–580 (2007)

    Google Scholar 

  12. Na, T., et al.: Signature-based trajectory similarity join. IEEE Trans. Knowl. Data Eng. 29(4), 870–883 (2017)

    Article  Google Scholar 

  13. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: Proceedings of the VLDB, vol. 29, pp. 802–813 (2003)

    Chapter  Google Scholar 

  14. Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories under inconsistent sampling rates. In: IEEE ICDE, pp. 999–1010 (2015)

    Google Scholar 

  15. Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity search under the time warping distance. In: Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (2005)

    Google Scholar 

  16. Sankararaman, S., Agarwal, P.K., Mølhave, T., Pan, J., Boedihardjo, A.P.: Model-driven matching and segmentation of trajectories. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 234–243 (2013)

    Google Scholar 

  17. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. Proc. VLDB 10(11), 1178–1189 (2017)

    Article  Google Scholar 

  18. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT, pp. 156–167 (2012)

    Google Scholar 

  19. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

    Article  Google Scholar 

  20. Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual indexing for geographical search on the web. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005). https://doi.org/10.1007/11535331_13

    Chapter  Google Scholar 

  21. Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: IEEE ICDE, pp. 673–684 (2002)

    Google Scholar 

  22. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  23. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: IEEE ICDE, pp. 201–208 (1998)

    Google Scholar 

  24. Yun, C., Patel, J.M.: Design and evaluation of trajectory join algorithms. In: ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (2009)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by Hubei Natural Science Foundation under Grant No. 2017CFB135, and the Fundamental Research Funds for the Central Universities under Grants No. CCNU18QN017, CZZ17003, and Teaching Research Projects NO. JYX17032, and NSFC Grant No. 61309002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyin Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dan, T., Luo, C., Li, Y., Zhang, C. (2019). Trajectory Similarity Join for Spatial Temporal Database. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27618-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27617-1

  • Online ISBN: 978-3-030-27618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics