Abstract
A key contributor to the success of keyword search systems is a ranking mechanism that considers the importance of the retrieved documents. The notion of importance in graphs is typically computed using centrality measures that highly depend on the degree of the nodes, such as PageRank. However, in RDF graphs, the notion of importance is not necessarily related to the node degree. Therefore, this paper addresses two problems: (1) how to define importance measures in RDF graphs; (2) how to use these measures to help compile and rank results of keyword queries over RDF graphs. To solve these problems, the paper proposes a novel family of measures, called InfoRank, and a keyword search system, called QUIRA, for RDF graphs. Finally, this paper concludes with experiments showing that the proposed solution improves the quality of results in two keyword search benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, A., et al.: Learning to rank networked entities. In: Proceedings 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2006, pp. 14–23 (2006)
Agrawal, S., et al.: DBXplorer: a system for keyword-based search over relational databases. In: Proceedings 18th International Conference Data Engineering, pp. 5–16 (2002)
Balmin, A., et al.: ObjectRank: authority-based keyword search in databases. In: Proceedings 13th International Conference on Very Large Data Bases - Volume 30, pp. 564–575 (2004)
Bast, H., et al.: Semantic Search on Text and Knowledge Bases. Foundation and Trends® in Information Retrieval, vol. 10, no. 2–3, pp. 119–271 (2016)
Bhalotia, G., et al.: Keyword searching and browsing in databases using BANKS. In: Proceedings 18th International Conference on Data Engineering, pp. 431–440. IEEE Computer Society (2002)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)
Chirita, P.A., et al.: Beagle ++: semantically enhanced searching and ranking on the desktop. In: The Semantic Web: Research and Applications - ESWC 2006, pp. 348–362 (2006)
Coffman, J., Weaver, A.C.: A framework for evaluating database keyword search strategies. In: Proceedings 19th ACM International Conference on Information and Knowledge Management, pp. 729–738 (2010)
De Oliveira, P., et al.: Ranking Candidate Networks of relations to improve keyword search over relational databases. In: Proceedings 31st International Conference on Data Engineering, pp. 399–410 (2015)
Ding, L., et al.: Swoogle: a search and metadata engine for the semantic web. In: Proceedings 13th ACM Conference on Information and Knowledge Management - CIKM 2004, pp. 652–659 (2004)
Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: Proceedings 20th ACM International Conference on Information and Knowledge Management - CIKM 2011, pp. 237–242 (2011)
Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: ranking semantic web data by tensor decomposition. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_14
García, G.M., et al.: RDF Keyword-based query technology meets a real-world data set. In: Proceedings 20th International Conference on Extending Database Technology (EDBT), pp. 656–667 (2017)
Graves, A., et al.: A method to rank nodes in an RDF graph. In: Proceedings 7th International Semantic Web Conference, pp. 84–85 (2008)
Harth, A., Kinsella, S., Decker, S.: Using naming authority to rank data and ontologies for web search. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 277–292. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_18
He, H., et al.: BLINKS: ranked keyword searches on graphs. In: Proceedings 2007 ACM International Conference on Management of Data - SIGMOD 2007, pp. 305–316 (2007)
Hiemstra, D.: Information retrieval models. In: Information Retrieval: Searching in the 21st Century, pp. 1–17 (2009)
Hogan, A., et al.: ReConRank: a scalable ranking method for semantic web data with context. In: Proceedings 2nd Workshop on Scalable Semantic Web Knowledge Base System (2006)
Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational databases. In: Proceedings 28th International Conference on Very Large Databases, pp. 670–681. Elsevier (2002)
Izquierdo, Y.T., García, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F., Levy, C.H.: QUIOW: a keyword-based query processing tool for RDF datasets and relational databases. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 259–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_22
Kasneci, G., et al.: NAGA: searching and ranking knowledge. In: Proceedings 2008 IEEE 24th International Conference on Data Engineering, pp. 953–962 (2008)
Kim, J.H., et al.: PageRank revisited: on the relationship between node degrees and node significances in different applications. In: Proceedings 5th International Workshop on Querying Graph Structured Data at EDBT/ICDT, pp. 1–8 (2016)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Komamizu, T., Okumura, S., Amagasa, T., Kitagawa, H.: FORK: feedback-aware objectrank-based keyword search over linked data. In: Sung, W.K., et al. (eds.) Information Retrieval Technology AIRS 2017. Lecture Notes in Computer Science, vol. 10648, pp. 58–70. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70145-5_5
Marx, E., et al.: DBtrends: exploring query logs for ranking RDF data. In: Proceedings 12th International ACM Conference on Semantic Systems, pp. 9–16 (2016)
Mirizzi, R., Ragone, A., Di Noia, T., Di Sciascio, E.: Ranking the linked data: the case of DBpedia. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 337–354. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13911-6_23
Nie, Z., et al.: Object-level ranking. In: Proceedings 14th International Conference on World Wide Web - WWW 2005, pp. 567–674 (2005)
Oren, E., et al.: Sindice.com: a document-oriented lookup index for open linked data. Int. J. Metadata Semant. Ontol. 3(1), 37–52 (2008)
Park, H., et al.: A link-based ranking algorithm for semantic web resources. J. Database Manag. 22(1), 1–25 (2011)
Roa-Valverde, A.J., Sicilia, M.-A.: A survey of approaches for ranking on the web of data. Inf. Retr. 17(4), 295–325 (2014)
Tran, T., et al.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: Proceedings 25th International Conference on Data Engineering, pp. 405–416 (2009)
Turpin, A., Scholer, F.: User performance versus precision measures for simple search tasks. In: Proceedings 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 11–18 (2006)
Wei, W., et al.: Rational Research model for ranking semantic entities. Inf. Sci. 181(13), 2823–2840 (2011)
Yu, J.X., et al.: Keyword Search in Databases. Morgan & Claypool, San Francisco (2010)
Yumusak, S., et al.: A short survey of linked data ranking. In: Proceedings 2014 ACM Southeast Regional Conference on - ACM SE 2014, pp. 1–4 (2014)
Zenz, G., et al.: From keywords to semantic queries - Incremental query construction on the semantic web. Web Semant. Sci. Serv. Agents W.W.W. 7(3), 166–176 (2009)
Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: adapting keyword query to semantic search. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_50
Acknowledgments
This work was partly funded by CAPES under grant 88881.134081/2016-01, by CNPq under grants 153908/2015-7, 302303/2017-0 and by FAPERJ under grant E-26-202.818/2017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Menendez, E.S., Casanova, M.A., Paes Leme, L.A.P., Boughanem, M. (2019). Novel Node Importance Measures to Improve Keyword Search over RDF Graphs. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-27618-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27617-1
Online ISBN: 978-3-030-27618-8
eBook Packages: Computer ScienceComputer Science (R0)