[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Database Processing-in-Memory: A Vision

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Abstract

The recent trend of Processing-in-Memory (PIM) promises to tackle the memory and energy wall problems lurking in the data movement around the memory hierarchy, like in data analysis applications. In this paper, we present our vision on how database systems can embrace PIM in query processing. We share with the community an empirical analysis of the pros/cons of PIM in three main query operators to discuss our vision. We also present promising results of our ongoing work to build a PIM-aware query scheduler that improved query execution in almost 3\(\times \) and reduced energy consumption in at least 25%. We complete our discussion with challenges and opportunities to foster research impulses in the co-design of Database-PIM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves, M.A.Z., Diener, M., Santos, P.C., Carro, L.: Large vector extensions inside the HMC. In: DATE (2016)

    Google Scholar 

  2. Alves, M.A.Z., Villavieja, C., Diener, M., Moreira, F.B., Navaux, P.O.A.: Sinuca: a validated micro-architecture simulator. In: HPCC/CSS/ICESS (2015)

    Google Scholar 

  3. Breß, S., Mohammad, S., Schallehn, E.: Self-tuning distribution of DB-operations on hybrid CPU/GPU platforms. In: 24th Grundlagen von Datenbanken (2012)

    Google Scholar 

  4. Cheng, X., He, B., et al.: Many-core needs fine-grained scheduling: a case study of query processing on intel xeon phi processors. J. Parallel Distrib. Comput. 120, 395–404 (2018)

    Article  Google Scholar 

  5. Cho, S., Park, C., Oh, H., Kim, S., Yi, Y., Ganger, G.R.: Active disk meets flash: a case for intelligent SSDs. In: ICS (2013)

    Google Scholar 

  6. DeWitt, D.J., Hawthorn, P.B.: A performance evaluation of data base machine architectures (invited paper). In: 7th VLDB (1981)

    Google Scholar 

  7. Do, J., Kee, Y., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query processing on smart SSDs: opportunities and challenges. In: SIGMOD (2013)

    Google Scholar 

  8. Graefe, G., Harizopoulos, S., Kuno, H.A., Shah, M.A., et al.: Designing database operators for flash-enabled memory hierarchies. IEEE Data Eng. 33, 21–27 (2010)

    Google Scholar 

  9. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP through the looking glass, and what we found there. In: SIGMOD (2008)

    Google Scholar 

  10. HMC Consortium: Hybrid Memory Cube Specification 2.1 June 2015. http://www.hybridmemorycube.org/. hMC-30G-VSR PHY

  11. Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar, N., Mutlu, O., Keckler, S.W.: Transparent offloading and mapping (TOM): enabling programmer-transparent near-data processing in GPU systems. In: ISCA (2016)

    Google Scholar 

  12. Jeddeloh, J., Keeth, B.: Hybrid memory cube new DRAM architecture increases density and performance. In: VLSIT (2012)

    Google Scholar 

  13. Karnagel, T., Habich, D., Schlegel, B., Lehner, W.: Heterogeneity-aware operator placement in column-store DBMS. Datenbank-Spektrum (2014)

    Google Scholar 

  14. Kautz, W.H.: Cellular logic-in-memory arrays. IEEE Trans. Comput. 18, 719–727 (1969)

    Article  Google Scholar 

  15. Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks (IDISKs). In: SIGMOD Record (1998)

    Article  Google Scholar 

  16. Kepe, T.R.: Dynamic database operator scheduling for processing-in-memory. In: PhD@VLDB (2018)

    Google Scholar 

  17. Kim, J., Kim, Y.: HBM: memory solution for bandwidth-hungry processors. In: 26th HCS (2014)

    Google Scholar 

  18. Kim, S., Oh, H., Park, C., Cho, S., Lee, S.: Fast, energy efficient scan inside flash memory. In: ADMS@VLDB (2011)

    Google Scholar 

  19. Mirzadeh, N., Kocberber, O., Falsafi, B., Grot, B.: Sort vs. hash join revisited for near-memory execution. In: ASBD@ISCA (2015)

    Google Scholar 

  20. Patterson, D.A., et al.: A case for intelligent RAM. IEEE Micro 17, 34–44 (1997). https://dblp.uni-trier.de/rec/bibtex/journals/micro/PattersonACFKKT97

    Article  Google Scholar 

  21. Pattnaik, A., Tang, X., Jog, A., Kayiran, O., et al.: Scheduling techniques for GPU architectures with processing-in-memory capabilities. In: PACT (2016)

    Google Scholar 

  22. Tiwari, D., Boboila, S., et al.: Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines. In: 11th USENIX/FAST (2013)

    Google Scholar 

  23. Tome, D.G., Kepe, T.R., Alves, M.A.Z., de Almeida, E.C.: Near-data filters: taking another brick from the memory wall. In: ADMS@VLDB (2018)

    Google Scholar 

  24. Tome, D.G., Santos, P.C., Carro, L., de Almeida, E.C., Alves, M.A.Z.: HIPE: HMC instruction predication extension applied on database processing. In: DATE (2018)

    Google Scholar 

  25. Wang, L., Skadron, K.: Implications of the power wall: dim cores and reconfigurable logic. IEEE Micro 33, 40–48 (2013). https://dblp.uni-trier.de/rec/bibtex/journals/micro/WangS13

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Serrapilheira Institute (grant number Serra-1709-16621).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiago R. Kepe , Eduardo C. Almeida , Marco A. Z. Alves or Jorge A. Meira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kepe, T.R., Almeida, E.C., Alves, M.A.Z., Meira, J.A. (2019). Database Processing-in-Memory: A Vision. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11706. Springer, Cham. https://doi.org/10.1007/978-3-030-27615-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27615-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27614-0

  • Online ISBN: 978-3-030-27615-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics