Abstract
The recent trend of Processing-in-Memory (PIM) promises to tackle the memory and energy wall problems lurking in the data movement around the memory hierarchy, like in data analysis applications. In this paper, we present our vision on how database systems can embrace PIM in query processing. We share with the community an empirical analysis of the pros/cons of PIM in three main query operators to discuss our vision. We also present promising results of our ongoing work to build a PIM-aware query scheduler that improved query execution in almost 3\(\times \) and reduced energy consumption in at least 25%. We complete our discussion with challenges and opportunities to foster research impulses in the co-design of Database-PIM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alves, M.A.Z., Diener, M., Santos, P.C., Carro, L.: Large vector extensions inside the HMC. In: DATE (2016)
Alves, M.A.Z., Villavieja, C., Diener, M., Moreira, F.B., Navaux, P.O.A.: Sinuca: a validated micro-architecture simulator. In: HPCC/CSS/ICESS (2015)
Breß, S., Mohammad, S., Schallehn, E.: Self-tuning distribution of DB-operations on hybrid CPU/GPU platforms. In: 24th Grundlagen von Datenbanken (2012)
Cheng, X., He, B., et al.: Many-core needs fine-grained scheduling: a case study of query processing on intel xeon phi processors. J. Parallel Distrib. Comput. 120, 395–404 (2018)
Cho, S., Park, C., Oh, H., Kim, S., Yi, Y., Ganger, G.R.: Active disk meets flash: a case for intelligent SSDs. In: ICS (2013)
DeWitt, D.J., Hawthorn, P.B.: A performance evaluation of data base machine architectures (invited paper). In: 7th VLDB (1981)
Do, J., Kee, Y., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query processing on smart SSDs: opportunities and challenges. In: SIGMOD (2013)
Graefe, G., Harizopoulos, S., Kuno, H.A., Shah, M.A., et al.: Designing database operators for flash-enabled memory hierarchies. IEEE Data Eng. 33, 21–27 (2010)
Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP through the looking glass, and what we found there. In: SIGMOD (2008)
HMC Consortium: Hybrid Memory Cube Specification 2.1 June 2015. http://www.hybridmemorycube.org/. hMC-30G-VSR PHY
Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar, N., Mutlu, O., Keckler, S.W.: Transparent offloading and mapping (TOM): enabling programmer-transparent near-data processing in GPU systems. In: ISCA (2016)
Jeddeloh, J., Keeth, B.: Hybrid memory cube new DRAM architecture increases density and performance. In: VLSIT (2012)
Karnagel, T., Habich, D., Schlegel, B., Lehner, W.: Heterogeneity-aware operator placement in column-store DBMS. Datenbank-Spektrum (2014)
Kautz, W.H.: Cellular logic-in-memory arrays. IEEE Trans. Comput. 18, 719–727 (1969)
Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks (IDISKs). In: SIGMOD Record (1998)
Kepe, T.R.: Dynamic database operator scheduling for processing-in-memory. In: PhD@VLDB (2018)
Kim, J., Kim, Y.: HBM: memory solution for bandwidth-hungry processors. In: 26th HCS (2014)
Kim, S., Oh, H., Park, C., Cho, S., Lee, S.: Fast, energy efficient scan inside flash memory. In: ADMS@VLDB (2011)
Mirzadeh, N., Kocberber, O., Falsafi, B., Grot, B.: Sort vs. hash join revisited for near-memory execution. In: ASBD@ISCA (2015)
Patterson, D.A., et al.: A case for intelligent RAM. IEEE Micro 17, 34–44 (1997). https://dblp.uni-trier.de/rec/bibtex/journals/micro/PattersonACFKKT97
Pattnaik, A., Tang, X., Jog, A., Kayiran, O., et al.: Scheduling techniques for GPU architectures with processing-in-memory capabilities. In: PACT (2016)
Tiwari, D., Boboila, S., et al.: Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines. In: 11th USENIX/FAST (2013)
Tome, D.G., Kepe, T.R., Alves, M.A.Z., de Almeida, E.C.: Near-data filters: taking another brick from the memory wall. In: ADMS@VLDB (2018)
Tome, D.G., Santos, P.C., Carro, L., de Almeida, E.C., Alves, M.A.Z.: HIPE: HMC instruction predication extension applied on database processing. In: DATE (2018)
Wang, L., Skadron, K.: Implications of the power wall: dim cores and reconfigurable logic. IEEE Micro 33, 40–48 (2013). https://dblp.uni-trier.de/rec/bibtex/journals/micro/WangS13
Acknowledgments
This work was partially supported by the Serrapilheira Institute (grant number Serra-1709-16621).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kepe, T.R., Almeida, E.C., Alves, M.A.Z., Meira, J.A. (2019). Database Processing-in-Memory: A Vision. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11706. Springer, Cham. https://doi.org/10.1007/978-3-030-27615-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-27615-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27614-0
Online ISBN: 978-3-030-27615-7
eBook Packages: Computer ScienceComputer Science (R0)