Abstract
Nowadays, the volume of legal information available is continuously growing. As a result, browsing and querying this huge legal corpus in search of specific information is currently a tedious task exacerbated by the fact that data presentation does not usually meet the needs of professionals in the sector. To satisfy these ever-increasing needs, we have designed an appropriate solution to provide an adaptive and intelligent solution for the automatic answer of questions of legal content based on the computation of reinforced co-occurrence, i.e. a very demanding type of co-occurrence that requires large volumes of information but guarantees good results. This solution is based on the pattern-based methods that have been already successfully applied in information extraction research. An empirical evaluation over a dataset of legal questions seems to indicate that this solution is promising.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Although we foresee learning the parameters of our system as future work.
References
Aydin, B.I., Yilmaz, Y.S., Li, Y., Li, Q., Gao, J., Demirbas, M.: Crowdsourcing for multiple-choice question answering. In: AAAI, pp. 2946–2953 (2014)
Bennett, Z., Russell-Rose, T., Farmer, K.: A scalable approach to legal question answering. In: ICAIL, pp. 269–270 (2017)
Blohm, S., Cimiano, P.: Using the web to reduce data sparseness in pattern-based information extraction. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 18–29. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_6
Brueninghaus, S., Ashley, K.D.: Improving the representation of legal case texts with information extraction methods. In: ICAIL, pp. 42–51 (2001)
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)
Ding, J., Wang, Y., Hu, W., Shi, L., Qu, Y.: Answering multiple-choice questions in geographical gaokao with a concept graph. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 161–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_11
Fawei, B., Pan, J.Z., Kollingbaum, M., Wyner, A.Z.: A methodology for a criminal law and procedure ontology for legal question answering. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds.) JIST 2018. LNCS, vol. 11341, pp. 198–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04284-4_14
Ferrucci, D.A.: Introduction to this is Watson. IBM J. Res. Dev. 56(3), 1 (2012)
Ferrucci, D.A., Levas, A., Bagchi, S., Gondek, D., Mueller, E.T.: Watson: beyond Jeopardy!. Artif. Intell. 199–200, 93–105 (2013)
Hoffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)
Kolomiyets, O., Moens, M.-F.: A survey on question answering technology from an information retrieval perspective. Inf. Sci. 181(24), 5412–5434 (2011)
Lame, G.: Using NLP techniques to identify legal ontology components: concepts and relations. Artif. Intell. Law 12(4), 379–396 (2004)
Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)
Martinez-Gil, J., Freudenthaler, B., Natschlaeger, T.: Automatic recommendation of prognosis measures for mechanical components based on massive text mining. IJWIS 14(4), 480–494 (2018)
Martinez-Gil, J.: Automated knowledge base management: a survey. Comput. Sci. Rev. 18, 1–9 (2015)
Maxwell, K.T., Schafer, B.: Concept and context in legal information retrieval. In: JURIX, pp. 63–72 (2008)
Mimouni, N., Nazarenko, A., Salotti, S.: Answering complex queries on legal networks: a direct and a structured IR approaches. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015–2017. LNCS (LNAI), vol. 10791, pp. 451–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0_31
Morimoto, A., Kubo, D., Sato, M., Shindo, H., Matsumoto, Y.: Legal question answering system using neural attention. In: COLIEE@ICAIL, pp. 79–89 (2017)
Nicula, B., Ruseti, S., Rebedea, T.: Improving deep learning for multiple choice question answering with candidate contexts. In: ECIR, pp. 678–683 (2018)
Stam, M.: Calcipher System. https://github.com/matt-stam/calcipher. Accessed 01 Apr 2019
Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase via relation extraction and textual evidence. In: ACL, vol. 1 (2016)
Yih, W.-T., Chang, M.-W., Meek, C., Pastusiak, A.: Question answering using enhanced lexical semantic models. In: ACL, vol. 1, pp. 1744–1753 (2013)
Acknowledgements
This research work has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the State of Upper Austria in the frame of the COMET center SCCH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Martinez-Gil, J., Freudenthaler, B., Tjoa, A.M. (2019). Multiple Choice Question Answering in the Legal Domain Using Reinforced Co-occurrence. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11706. Springer, Cham. https://doi.org/10.1007/978-3-030-27615-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-27615-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27614-0
Online ISBN: 978-3-030-27615-7
eBook Packages: Computer ScienceComputer Science (R0)