[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiple Choice Question Answering in the Legal Domain Using Reinforced Co-occurrence

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11706))

Included in the following conference series:

Abstract

Nowadays, the volume of legal information available is continuously growing. As a result, browsing and querying this huge legal corpus in search of specific information is currently a tedious task exacerbated by the fact that data presentation does not usually meet the needs of professionals in the sector. To satisfy these ever-increasing needs, we have designed an appropriate solution to provide an adaptive and intelligent solution for the automatic answer of questions of legal content based on the computation of reinforced co-occurrence, i.e. a very demanding type of co-occurrence that requires large volumes of information but guarantees good results. This solution is based on the pattern-based methods that have been already successfully applied in information extraction research. An empirical evaluation over a dataset of legal questions seems to indicate that this solution is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://global.oup.com.

  2. 2.

    Although we foresee learning the parameters of our system as future work.

References

  1. Aydin, B.I., Yilmaz, Y.S., Li, Y., Li, Q., Gao, J., Demirbas, M.: Crowdsourcing for multiple-choice question answering. In: AAAI, pp. 2946–2953 (2014)

    Google Scholar 

  2. Bennett, Z., Russell-Rose, T., Farmer, K.: A scalable approach to legal question answering. In: ICAIL, pp. 269–270 (2017)

    Google Scholar 

  3. Blohm, S., Cimiano, P.: Using the web to reduce data sparseness in pattern-based information extraction. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 18–29. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_6

    Chapter  Google Scholar 

  4. Brueninghaus, S., Ashley, K.D.: Improving the representation of legal case texts with information extraction methods. In: ICAIL, pp. 42–51 (2001)

    Google Scholar 

  5. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  6. Ding, J., Wang, Y., Hu, W., Shi, L., Qu, Y.: Answering multiple-choice questions in geographical gaokao with a concept graph. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 161–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_11

    Chapter  Google Scholar 

  7. Fawei, B., Pan, J.Z., Kollingbaum, M., Wyner, A.Z.: A methodology for a criminal law and procedure ontology for legal question answering. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds.) JIST 2018. LNCS, vol. 11341, pp. 198–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04284-4_14

    Chapter  Google Scholar 

  8. Ferrucci, D.A.: Introduction to this is Watson. IBM J. Res. Dev. 56(3), 1 (2012)

    Google Scholar 

  9. Ferrucci, D.A., Levas, A., Bagchi, S., Gondek, D., Mueller, E.T.: Watson: beyond Jeopardy!. Artif. Intell. 199–200, 93–105 (2013)

    Article  Google Scholar 

  10. Hoffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)

    Article  Google Scholar 

  11. Kolomiyets, O., Moens, M.-F.: A survey on question answering technology from an information retrieval perspective. Inf. Sci. 181(24), 5412–5434 (2011)

    Article  MathSciNet  Google Scholar 

  12. Lame, G.: Using NLP techniques to identify legal ontology components: concepts and relations. Artif. Intell. Law 12(4), 379–396 (2004)

    Article  Google Scholar 

  13. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

    Article  Google Scholar 

  14. Martinez-Gil, J., Freudenthaler, B., Natschlaeger, T.: Automatic recommendation of prognosis measures for mechanical components based on massive text mining. IJWIS 14(4), 480–494 (2018)

    Article  Google Scholar 

  15. Martinez-Gil, J.: Automated knowledge base management: a survey. Comput. Sci. Rev. 18, 1–9 (2015)

    Article  MathSciNet  Google Scholar 

  16. Maxwell, K.T., Schafer, B.: Concept and context in legal information retrieval. In: JURIX, pp. 63–72 (2008)

    Google Scholar 

  17. Mimouni, N., Nazarenko, A., Salotti, S.: Answering complex queries on legal networks: a direct and a structured IR approaches. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015–2017. LNCS (LNAI), vol. 10791, pp. 451–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0_31

    Chapter  Google Scholar 

  18. Morimoto, A., Kubo, D., Sato, M., Shindo, H., Matsumoto, Y.: Legal question answering system using neural attention. In: COLIEE@ICAIL, pp. 79–89 (2017)

    Google Scholar 

  19. Nicula, B., Ruseti, S., Rebedea, T.: Improving deep learning for multiple choice question answering with candidate contexts. In: ECIR, pp. 678–683 (2018)

    Google Scholar 

  20. Stam, M.: Calcipher System. https://github.com/matt-stam/calcipher. Accessed 01 Apr 2019

  21. Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase via relation extraction and textual evidence. In: ACL, vol. 1 (2016)

    Google Scholar 

  22. Yih, W.-T., Chang, M.-W., Meek, C., Pastusiak, A.: Question answering using enhanced lexical semantic models. In: ACL, vol. 1, pp. 1744–1753 (2013)

    Google Scholar 

Download references

Acknowledgements

This research work has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the State of Upper Austria in the frame of the COMET center SCCH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martinez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Gil, J., Freudenthaler, B., Tjoa, A.M. (2019). Multiple Choice Question Answering in the Legal Domain Using Reinforced Co-occurrence. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11706. Springer, Cham. https://doi.org/10.1007/978-3-030-27615-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27615-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27614-0

  • Online ISBN: 978-3-030-27615-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics