[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Study of TSK Inference Approaches for Control Problems

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11743))

Included in the following conference series:

Abstract

Fuzzy inference systems provide a simple yet powerful solution to complex non-linear problems, which have been widely and successfully applied in the control field. The TSK-based fuzzy inference approaches, such as the convention TSK, interval type 2 (IT2) TSK and their extensions TSK+ and IT2 TSK+ approaches, are more convenient to be employed in the control field, as they directly produce crisp outputs. This paper systematically reviews those four TSK-based inference approaches, and evaluates them empirically by applying them to a well-known cart centering control problem. The experimental results confirm the power of TSK+ and IT2 TSK+ approaches in enhancing the inference using either dense or sparse rule bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. C–26(12), 1182–1191 (1977)

    Article  Google Scholar 

  2. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC 15(1), 116–132 (1985)

    Article  Google Scholar 

  3. Li, J., Yang, L., Qu, Y., Sexton, G.: An extended Takagi-Sugeno-Kang inference system (TSK+) with fuzzy interpolation and its rule base generation. Soft Comput. 22(10), 3155–3170 (2018)

    Article  Google Scholar 

  4. Kóczy, L.T., Hirota, K.: Approximate reasoning by linear rule interpolation and general approximation. Int. J. Approximate Reasoning 9(3), 197–225 (1993)

    Article  MathSciNet  Google Scholar 

  5. Huang, Z., Shen, Q.: Fuzzy interpolation and extrapolation: a practical approach. IEEE Trans. Fuzzy Syst. 16(1), 13–28 (2008)

    Article  Google Scholar 

  6. Yang, L., Chao, F., Shen, Q.: Generalized adaptive fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 25(4), 839–853 (2017)

    Article  Google Scholar 

  7. Yang, L., Shen, Q.: Adaptive fuzzy interpolation. IEEE Trans. Fuzzy Syst. 19(6), 1107–1126 (2011)

    Article  Google Scholar 

  8. Yang, L., Shen, Q.: Closed form fuzzy interpolation. Fuzzy Sets Syst. 225, 1–22 (2013). Theme: Fuzzy Systems

    Article  MathSciNet  Google Scholar 

  9. Naik, N., Diao, R., Shen, Q.: Dynamic fuzzy rule interpolation and its application to intrusion detection. IEEE Trans. Fuzzy Syst. PP(99), 1 (2017)

    Google Scholar 

  10. Chen, S.M., Zou, X.Y., Barman, D.: Adaptive weighted fuzzy rule interpolation based on ranking values and similarity measures of rough-fuzzy sets. Inf. Sci. 488, 93–110 (2019)

    Article  Google Scholar 

  11. Chen, S.M., Adam, S.I.: Adaptive fuzzy interpolation based on ranking values of interval type-2 polygonal fuzzy sets. Inf. Sci. 435, 320–333 (2018)

    Article  MathSciNet  Google Scholar 

  12. Li, J., Qu, Y., Shum, H.P.H., Yang, L.: TSK inference with sparse rule bases. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds.) Advances in Computational Intelligence Systems. AISC, vol. 513, pp. 107–123. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46562-3_8

    Chapter  Google Scholar 

  13. Yasunobu, S., Miyamoto, S., Ihara, H.: Fuzzy control for automatic train operation system. IFAC Proc. Volumes 16(4), 33–39 (1983). 4th IFAC/IFIP/IFORS Conference on Control in Transportation Systems, Baden-Baden, FRG, 20–22 April 1983

    Article  Google Scholar 

  14. Li, J., Yang, L., Shum, H.P.H., Sexton, G., Tan, Y.: Intelligent home heating controller using fuzzy rule interpolation. In: 15th UK Workshop on Computational Intelligence, UKCI (2015)

    Google Scholar 

  15. Yang, L., Li, J., Hackney, P., Chao, F., Flanagan, M.: Manual task completion time estimation for job shop scheduling using a fuzzy inference system. In: 10th IEEE International Conference on Cyber, Physical and Social Computing (2017)

    Google Scholar 

  16. Yang, L., Li, J., Chao, F., Hackney, P., Flanagan, M.: Job shop planning and scheduling for manufacturers with manual operations. Expert Syst. (2018)

    Google Scholar 

  17. Elisa, N., Li, J., Zuo, Z., Yang, L.: Dendritic cell algorithm with fuzzy inference system for input signal generation. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds.) UKCI 2018. AISC, vol. 840, pp. 203–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97982-3_17

    Chapter  Google Scholar 

  18. Zuo, Z., Li, J., Anderson, P., Yang, L., Naik, N.: Grooming detection using fuzzy-rough feature selection and text classification. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018)

    Google Scholar 

  19. Zuo, Z., Li, J., Wei, B., Yang, L., Chao, F., Naik, N.: Adaptive activation function generation for artificial neural networks through fuzzy inference with application in grooming text categorisation. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2019)

    Google Scholar 

  20. Fu, X., Zeng, X.J., Wang, D., Xu, D., Yang, L.: Fuzzy system approaches to negotiation pricing decision support. J. Intell. Fuzzy Syst. 29(2), 685–699 (2015)

    Article  Google Scholar 

  21. Li, J., Yang, L., Fu, X., Chao, F., Qu, Y.: Dynamic QoS solution for enterprise networks using TSK fuzzy interpolation. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017)

    Google Scholar 

  22. Gürsel, G.: Healthcare, uncertainty, and fuzzy logic. Digital Med. 2(3), 101 (2016)

    Article  Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  24. Wu, D., Nie, M.: Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 2131–2138, June 2011

    Google Scholar 

  25. Li, J., Yang, L., Fu, X., Chao, F., Qu, Y.: Interval type-2 TSK+ fuzzy inference system. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018)

    Google Scholar 

  26. Enyinna, N., Karimoddini, A., Opoku, D., Homaifar, A., Arnold, S.: Developing an interval type-2 TSK fuzzy logic controller. In: 2015 Annual Conference of the North American Fuzzy Information Processing Society and the 5th World Conference on Soft Computing (2015)

    Google Scholar 

  27. Baklouti, N., John, R., Alimi, A.M.: Interval type-2 fuzzy logic control of mobile robots. J. Intell. Learn. Syst. Appl. 4(04), 291 (2012)

    Google Scholar 

  28. Yin, K., Xiang, K., Pang, M., Chen, J., Anderson, P., Yang, L.: Personalised control of robotic ankle exoskeleton through experience-based adaptive fuzzy inference. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2920134

    Article  Google Scholar 

  29. Chao, F., Zhou, D., Lin, C.M., Yang, L., Zhou, C., Shang, C.: Type-2 fuzzy hybrid controller network for robotic systems. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2919128

    Article  Google Scholar 

  30. Li, J., Shum, H.P.H., Fu, X., Sexton, G., Yang, L.: Experience-based rule base generation and adaptation for fuzzy interpolation. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 102–109. IEEE (2016)

    Google Scholar 

  31. Tan, Y., Li, J., Wonders, M., Chao, F., Shum, H.P.H., Yang, L.: Towards sparse rule base generation for fuzzy rule interpolation. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 110–117. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longzhi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Chao, F., Yang, L. (2019). A Study of TSK Inference Approaches for Control Problems. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11743. Springer, Cham. https://doi.org/10.1007/978-3-030-27538-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27538-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27537-2

  • Online ISBN: 978-3-030-27538-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics