Abstract
Recent advances in the development of technological devices and software for Industry 4.0 have pushed a change in the maintenance management systems and processes. Nowadays, in order to maintain a company competitive, a computerised management system is required to help in its maintenance tasks. This paper presents an analysis of the complexities and requirements for maintenance of Industry 4.0. It focuses on intelligent systems that can help to improve the intelligent management of maintenance. Finally, it presents a summary of lessons learned specified as guidelines for the design of such intelligent systems that can be applied horizontally to any company in the Industry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CEN, European Committee for Standardization: EN 13306:2017. Maintenance Terminology. European Standard (2017)
Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of Industry 4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 (2018). https://doi.org/10.1109/access.2017.2783682
Crespo Marquez, A., Gupta, J.N.: Contemporary maintenance management: process, framework and supporting pillars. Omega 34(3), 313–326 (2006). https://doi.org/10.1016/j.omega.2004.11.003
Ferreira, L.L., Albano, M., Silva, J., Martinho, D., Marreiros, G., di Orio, G., Malo, P., Ferreira, H.: A pilot for proactive maintenance in Industry 4.0. In: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS). IEEE (2017). https://doi.org/10.1109/wfcs.2017.7991952
Goh, K., Tjahjono, B., Baines, T., Subramaniam, S.: A review of research in manufacturing prognostics. In: 2006 IEEE International Conference on Industrial Informatics, Singapore, pp. 417–422. IEEE (2006). https://doi.org/10.1109/INDIN.2006.275836
Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 60(10), 3480–3492 (2011). https://doi.org/10.1109/TIM.2009.2036347
Lee, W.J., Wu, H., Yun, H., Kim, H., Jun, M.B., Sutheralnd, J.W.: Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP 80, 506–511 (2019)
Lu, B., Durocher, D., Stemper, P.: Predictive maintenance techniques. IEEE Ind. Appl. Mag. 15(6), 52–60 (2009). https://doi.org/10.1109/MIAS.2009.934444
Mrugalska, B., Wyrwicka, M.K.: Towards lean production in Industry 4.0. Procedia Eng. 182, 466–473 (2017). https://doi.org/10.1016/j.proeng.2017.03.135
O’Donoghue, C., Prendergast, J.: Implementation and benefits of introducing a computerised maintenance management system into a textile manufacturing company. J. Mater. Process. Technol. 153, 226–232 (2004)
Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: Machine learning approach for predictive maintenance in Industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA). IEEE (2018). https://doi.org/10.1109/mesa.2018.8449150
Patil, R.B., Mhamane, D.A., Kothavale, P.B., Kothavale, B.: Fault tree analysis: a case study from machine tool industry. Available at SSRN 3382241 (2018)
Potes Ruiz, P.A., Kamsu-Foguem, B., Noyes, D.: Knowledge reuse integrating the collaboration from experts in industrial maintenance management. Knowl. Based Syst. 50, 171–186 (2013). https://doi.org/10.1016/j.knosys.2013.06.005
Razmi-Farooji, A., Kropsu-Vehkaperä, H., Härkönen, J., Haapasalo, H.: Advantages and potential challenges of data management in e-maintenance. J. Qual. Maint. Eng. (2019)
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Harnisch, M.: Industry 4.0: the future of productivity and growth in manufacturing industries. Boston Consult. Group 9(1), 54–89 (2015)
Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., Vasilakos, A.V.: A manufacturing big data solution for active preventive maintenance. IEEE Trans. Ind. Inform. 13(4), 2039–2047 (2017). https://doi.org/10.1109/tii.2017.2670505
Acknowledgments
This work is supported by the FEDER/Ministry of Science, Innovation and Universities - State Research Agency RTC-2017-6401-7.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Garcia, E., Costa, A., Palanca, J., Giret, A., Julian, V., Botti, V. (2020). Requirements for an Intelligent Maintenance System for Industry 4.0. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-030-27477-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-27477-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27476-4
Online ISBN: 978-3-030-27477-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)