[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Requirements for an Intelligent Maintenance System for Industry 4.0

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2019)

Abstract

Recent advances in the development of technological devices and software for Industry 4.0 have pushed a change in the maintenance management systems and processes. Nowadays, in order to maintain a company competitive, a computerised management system is required to help in its maintenance tasks. This paper presents an analysis of the complexities and requirements for maintenance of Industry 4.0. It focuses on intelligent systems that can help to improve the intelligent management of maintenance. Finally, it presents a summary of lessons learned specified as guidelines for the design of such intelligent systems that can be applied horizontally to any company in the Industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.fiware.org/.

  2. 2.

    https://www.sonaearauco.com/es/.

References

  1. CEN, European Committee for Standardization: EN 13306:2017. Maintenance Terminology. European Standard (2017)

    Google Scholar 

  2. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of Industry 4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 (2018). https://doi.org/10.1109/access.2017.2783682

    Article  Google Scholar 

  3. Crespo Marquez, A., Gupta, J.N.: Contemporary maintenance management: process, framework and supporting pillars. Omega 34(3), 313–326 (2006). https://doi.org/10.1016/j.omega.2004.11.003

    Article  Google Scholar 

  4. Ferreira, L.L., Albano, M., Silva, J., Martinho, D., Marreiros, G., di Orio, G., Malo, P., Ferreira, H.: A pilot for proactive maintenance in Industry 4.0. In: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS). IEEE (2017). https://doi.org/10.1109/wfcs.2017.7991952

  5. Goh, K., Tjahjono, B., Baines, T., Subramaniam, S.: A review of research in manufacturing prognostics. In: 2006 IEEE International Conference on Industrial Informatics, Singapore, pp. 417–422. IEEE (2006). https://doi.org/10.1109/INDIN.2006.275836

  6. Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 60(10), 3480–3492 (2011). https://doi.org/10.1109/TIM.2009.2036347

    Article  Google Scholar 

  7. Lee, W.J., Wu, H., Yun, H., Kim, H., Jun, M.B., Sutheralnd, J.W.: Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP 80, 506–511 (2019)

    Article  Google Scholar 

  8. Lu, B., Durocher, D., Stemper, P.: Predictive maintenance techniques. IEEE Ind. Appl. Mag. 15(6), 52–60 (2009). https://doi.org/10.1109/MIAS.2009.934444

    Article  Google Scholar 

  9. Mrugalska, B., Wyrwicka, M.K.: Towards lean production in Industry 4.0. Procedia Eng. 182, 466–473 (2017). https://doi.org/10.1016/j.proeng.2017.03.135

    Article  Google Scholar 

  10. O’Donoghue, C., Prendergast, J.: Implementation and benefits of introducing a computerised maintenance management system into a textile manufacturing company. J. Mater. Process. Technol. 153, 226–232 (2004)

    Article  Google Scholar 

  11. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: Machine learning approach for predictive maintenance in Industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA). IEEE (2018). https://doi.org/10.1109/mesa.2018.8449150

  12. Patil, R.B., Mhamane, D.A., Kothavale, P.B., Kothavale, B.: Fault tree analysis: a case study from machine tool industry. Available at SSRN 3382241 (2018)

    Google Scholar 

  13. Potes Ruiz, P.A., Kamsu-Foguem, B., Noyes, D.: Knowledge reuse integrating the collaboration from experts in industrial maintenance management. Knowl. Based Syst. 50, 171–186 (2013). https://doi.org/10.1016/j.knosys.2013.06.005

    Article  Google Scholar 

  14. Razmi-Farooji, A., Kropsu-Vehkaperä, H., Härkönen, J., Haapasalo, H.: Advantages and potential challenges of data management in e-maintenance. J. Qual. Maint. Eng. (2019)

    Google Scholar 

  15. Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Harnisch, M.: Industry 4.0: the future of productivity and growth in manufacturing industries. Boston Consult. Group 9(1), 54–89 (2015)

    Google Scholar 

  16. Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., Vasilakos, A.V.: A manufacturing big data solution for active preventive maintenance. IEEE Trans. Ind. Inform. 13(4), 2039–2047 (2017). https://doi.org/10.1109/tii.2017.2670505

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the FEDER/Ministry of Science, Innovation and Universities - State Research Agency RTC-2017-6401-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia, E., Costa, A., Palanca, J., Giret, A., Julian, V., Botti, V. (2020). Requirements for an Intelligent Maintenance System for Industry 4.0. In: Borangiu, T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-030-27477-1_26

Download citation

Publish with us

Policies and ethics