[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dilation Operator Approach and Square Root Velocity Transform for Time/Doppler Spectra Characterization on SU(n)

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

  • 1815 Accesses

Abstract

We propose in this work the use of Dilation theory for non-stationary signals and their time/Doppler spectra to embed the underlying spectral measure on the Special Unitary group SU(n). The Dilation theory gives access to rotation-like matrices built in with partial correlation coefficients. Due to the non-stationary condition, the time/Doppler spectra is associated with a path on SU(n). We use next the Square root Velocity Transform which has been proven to be equivalent to a first order Sobolev metric on the space of shapes. Because the metric in the space of curves naturally extends to the space of shapes, this enables a comparison between curves’ shapes and allows then the classification of time/Doppler spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammar, G., Gragg, W., Reichel, L.: Constructing a unitary Hessenberg matrix from spectral data. In: Golub, G.H., Van Dooren, P. (eds.) Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, pp. 385–395. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-75536-1_18

    Chapter  Google Scholar 

  2. Arnaudon, M., Barbaresco, F., Yang, L.: Riemannian medians and means with applications to radar signal processing. IEEE J. Sel. Top. Signal Proces. 7, 595–604 (2013)

    Article  Google Scholar 

  3. Barbaresco, F.: Interactions between symmetric cone and information geometries: Bruhat-Tits and Siegel spaces models for high resolution autoregressive Doppler imagery. In: Nielsen, F. (ed.) ETVC 2008. LNCS, vol. 5416, pp. 124–163. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00826-9_6

    Chapter  Google Scholar 

  4. Barbaresco, F.: Radar micro-Doppler signal encoding in Siegle unit poly-disk for machine learning in Fisher metric space. In: Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018

    Google Scholar 

  5. Bauer, M., Bruveris, M., Michor, P.W.: Why use Sobolev metrics on the space of curves. In: Turaga, P., Srivastava, A. (eds.) Riemannian Computing in Computer Vision. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22957-7_11

    Chapter  Google Scholar 

  6. Bingham, N.H.: Szego’s theorem and its probabilistic descendants (2011). http://arxiv.org/abs/1108.0368

  7. Bouleux, G., Dugast, M., Marcon, E.: Information topological characterization of periodically correlated processes by dilation operators. IEEE Trans. Inf. Theor. (2019, in press). https://doi.org/10.1109/TIT.2019.2923217

  8. Celledoni, E., Eslitzbichler, M., Schmeding, A.: Shape analysis on Lie groups with applications in computer animation. J. Geom. Mech. 8, 273–304 (2016)

    Article  MathSciNet  Google Scholar 

  9. Constantinescu, T.: Schur Parameters, Factorization and Dilation Problems. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  10. Desbouvries, F.: Unitary Hessenberg and state-space model based methods for the harmonic retrieval problem. IEE Proc. Radar Sonar Navig. 143, 346–348 (1996)

    Article  Google Scholar 

  11. Dégerine, S., Lambert-Lacroix, S.: Characterization of the partial autocorrelation function of a nonstationary time series. J. Multivariate Anal. 2, 1296–1301 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Delsarte, P., Genin, Y.V., Kamp, Y.G.: Orthogonal polynomial matrices on the unit circle. IEEE Trans. Circ. Syst. 25, 149–160 (1978)

    Article  MathSciNet  Google Scholar 

  13. Dugast, M., Bouleux, G., Marcon, E.: Representation and characterization of nonstationary processes by dilation operators and induced shape space manifolds. Entropy 20(9), 717 (2018)

    Article  Google Scholar 

  14. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23(3), 284–293 (2004)

    Article  Google Scholar 

  15. Masani, P.: Dilations as propagators of Hilbertian varieties. SIAM J. Math. Anal. 9, 414–456 (1978)

    Article  MathSciNet  Google Scholar 

  16. Michor, P., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Mathematica 10, 217–245 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on shape spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74–113 (2007)

    Article  MathSciNet  Google Scholar 

  18. Shingel, T.: Interpolation in special orthogonal groups. IMA J. Numer. Anal. 29(3), 731–745 (2009)

    Article  MathSciNet  Google Scholar 

  19. Simon, B.: Orthogonal Polynomials on the Unit Circle Part 1 and Part 2, vol. 54. American Mathematical Society, Providence (2009)

    Google Scholar 

  20. Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208, 120–154 (2007)

    Article  MathSciNet  Google Scholar 

  21. Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6094-8

    Book  MATH  Google Scholar 

  22. Van Kortryk, T.S.: Matrix exponentials, \(SU(N)\) group elements, and real polynomial roots. J. Math. Phys. 57, 021701 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yang, L., Arnaudon, M., Barbaresco, F.: Riemannian median, geometry of covariance matrices and radar target detection. In: 2010 European Radar Conference (EuRAD), pp. 415–418, September 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bouleux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouleux, G., Barbaresco, F. (2019). Dilation Operator Approach and Square Root Velocity Transform for Time/Doppler Spectra Characterization on SU(n). In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics