Abstract
A variational formulation for nonequilibrium thermodynamics was recently proposed in [7, 8] for both discrete and continuum systems. This formulation extends the Hamilton principle of classical mechanics to include irreversible processes. In this paper, we show that this variational formulation yields a constructive and systematic way to derive from a unified perspective several bracket formulations for nonequilibrium thermodynamics proposed earlier in the literature, such as the single generator bracket and the double generator bracket. In the case of a linear relation between the thermodynamic fluxes and the thermodynamic forces, the metriplectic or GENERIC brackets are recovered. A similar development has been presented for continuum systems in [6] and applied to multicomponent fluids.
F. Gay-Balmaz is partially supported by the ANR project GEOMFLUID, ANR-14-CE23-0002-01; H. Yoshimura is partially supported by JSPS Grant-in-Aid for Scientific Research (S) 24224004, the MEXT Top Global University Project and Waseda University (SR 2019C-176).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balian, R.: De la mécanique statistique hors équilibre aux équations de transport. École thématique. École Joliot Curie “Noyaux en collisions”, Maubuisson, France, du 11–16 septembre 1995: 14ème session (1995)
Balian, R.: Introduction à la thermodynamique hors équilibre (2003). http://e2phy.in2p3.fr/2003/actesBalian.pdf
Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems with Internal Microstructure. Oxford University Press, New York (1994)
Edwards, B.J., Beris, A.N.: Noncanonical poisson bracket for nonlinear elasticity with extensions to viscoelasticity. Phys. A Math. Gen. 24, 2461–2480 (1991a)
Edwards, B.J., Beris, A.N.: Unified view of transport phenomena based on the generalized bracket formulation. Ind. Eng. Chem. Res. 30, 873–881 (1991b)
Eldred, C., Gay-Balmaz, F.: Single and double generator bracket formulations of geophysical fluids with irreversible processes (2019). https://arxiv.org/pdf/1811.11609.pdf
Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: discrete systems. J. Geom. Phys. 111, 169–193 (2017a)
Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: continuum systems. J. Geom. Phys. 111, 194–212 (2017b)
Gay-Balmaz, F., Yoshimura, H.: A variational formulation of nonequilibrium thermodynamics for discrete open systems with mass and heat transfer. Entropy 163, 1–26 (2018a). https://doi.org/10.3390/e20030163
Gay-Balmaz, F., Yoshimura, H.: Dirac structures in nonequilibrium thermodynamics. J. Math. Phys. 59, 012701–29 (2018b)
Grmela, M.: Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. A 102, 355–358 (1984)
Grmela, M., Öttinger, H.-C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(3), 6620–6632 (1997)
Kaufman, A.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A 100, 419–422 (1984)
Morrison, P.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100, 423–427 (1984a)
Morrison, P.: Some observations regarding brackets and dissipation. Technical report, University of California, Berkeley (1984b)
Morrison, P.: A paradigm for joined hamiltonian and dissipative systems. Physica D 18, 410–419 (1986)
Öttinger, H.-C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56, 6633–6655 (1997)
Stueckelberg, E.C.G., Scheurer, P.B.: Thermocinétique phénoménologique galiléenne, Birkhäuser (1974)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gay-Balmaz, F., Yoshimura, H. (2019). From Variational to Bracket Formulations in Nonequilibrium Thermodynamics of Simple Systems. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-26980-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26979-1
Online ISBN: 978-3-030-26980-7
eBook Packages: Computer ScienceComputer Science (R0)