Abstract
In this paper we proposed a new symbolic, non-standard recursive and fast orthonormalization procedure of linearly independent vectors but as in other approaches not orthonormal based on the Gram-Schmidt orthonormalization algorithm. Our adaptation of the Gram-Schmidt orthonormalization procedure provide simple analytic formulas for the \(\mathrm {SU(3)}\) Bargmann-Moshinsky basis orthonormalization coefficients and do not involve any square root operation on the expressions coming from the previous iterative computation steps. This distinct features of the proposed orthonormalization algorithm may make the large scale symbolic calculations feasible. We demonstrate efficiency of our procedure by benchmark large-scale calculations of the non-canonical BM basis with the highest weight vectors of \(\mathrm {SO(3)}\) irreducible representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Saha, A., et al.: Spectroscopy of a tetrahedral doubly magic candidate nucleus \(^{160}_{70}\)Yb\(^{90}\). J. Phys. G Nucl. Part. Phys. 46, 055102 (2019)
Deveikis, A., Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., Góźdź, A., Pȩdrak, A.: Symbolic algorithm for generating the orthonormal Bargmann–Moshinsky basis for \(\rm SU(3)\) group. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2018. LNCS, vol. 11077, pp. 131–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99639-4_9
Vinitsky, S., et al.: On generation of the Bargmann-Moshinsky basis of SU(3) group. J. Phys. Conf. Ser. 1194, 012109 (2019)
Gozdz, A., Pedrak, A., Gusev, A.A., Vinitsky, S.I.: Point symmetries in the nuclear SU(3) partner groups model. Acta Phys. Polonica B Proc. Suppl. 11, 19–28 (2018)
Bargmann, V., Moshinsky, M.: Group theory of harmonic oscillators (II). Nucl. Phys. 23, 177–199 (1961)
Moshinsky, M., Patera, J., Sharp, R.T., Winternitz, P.: Everything you always wanted to know about \(SU(3)\supset O(3)\). Ann. Phys. (N.Y.) 95, 139–169 (1975)
Alisauskas, S., Raychev, P., Roussev, R.: Analytical form of the orthonormal basis of the decomposition \(SU(3)\supset O(3)\supset O(2)\) for some \((\lambda,\mu )\) multiplets. J. Phys. G Nucl. Phys. 7, 1213–1226 (1981)
Varshalovitch, D.A., Moskalev, A.N., Hersonsky, V.K.: Quantum Theory of Angular Momentum. Nauka, Leningrad (1975). (also World Scientific (1988))
Raychev, P., Roussev, R.: Matrix elements of the generators of SU(3) and of the basic O(3) scalars in the enveloping algebra of SU(3). J. Phys. G Nucl. Phys. 7, 1227–1238 (1981)
Cseh, J.: Algebraic models for shell-like quarteting of nucleons. Phys. Lett. B 743, 213–217 (2015)
Dytrych, T., et al.: Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei. Comput. Phys. Commun. 207, 202–210 (2016)
Pan, F., Yuan, S., Launey, K.D., Draayer, J.P.: A new procedure for constructing basis vectors of SU(3)\(\supset \)SO(3). Nucl. Phys. A 743, 70–99 (2016)
Asherova, R.M., Smirnov, Y.F.: On asymptotic properties of a quantum number \(\Omega \) in a system with SU(3) symmetry. Repts. Math. Phys. 4, 83–95 (1973)
Draayer, J.P., Akiyama, Y.: Wigner and Racah coefficients for SU3. J. Math. Phys. 14, 1904–1912 (1973)
Acknowledgements
The work was partially supported by the Bogoliubov-Infeld program, Votruba-Blokhintsev program, the RUDN University Program 5-100 and grant of Plenipotentiary of the Republic of Kazakhstan in JINR. AD is grateful to Prof. A. Góźdź for hospitality during visits in Institute of Physics, Maria Curie-Skłodowska University (UMCS).
The authors thank the both referees for their useful comments, remarks and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Deveikis, A. et al. (2019). Symbolic-Numerical Algorithm for Large Scale Calculations the Orthonormal \(\mathrm {SU(3)}\) BM Basis. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-26831-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26830-5
Online ISBN: 978-3-030-26831-2
eBook Packages: Computer ScienceComputer Science (R0)