[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symbolic-Numerical Algorithm for Large Scale Calculations the Orthonormal \(\mathrm {SU(3)}\) BM Basis

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Included in the following conference series:

Abstract

In this paper we proposed a new symbolic, non-standard recursive and fast orthonormalization procedure of linearly independent vectors but as in other approaches not orthonormal based on the Gram-Schmidt orthonormalization algorithm. Our adaptation of the Gram-Schmidt orthonormalization procedure provide simple analytic formulas for the \(\mathrm {SU(3)}\) Bargmann-Moshinsky basis orthonormalization coefficients and do not involve any square root operation on the expressions coming from the previous iterative computation steps. This distinct features of the proposed orthonormalization algorithm may make the large scale symbolic calculations feasible. We demonstrate efficiency of our procedure by benchmark large-scale calculations of the non-canonical BM basis with the highest weight vectors of \(\mathrm {SO(3)}\) irreducible representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saha, A., et al.: Spectroscopy of a tetrahedral doubly magic candidate nucleus \(^{160}_{70}\)Yb\(^{90}\). J. Phys. G Nucl. Part. Phys. 46, 055102 (2019)

    Article  Google Scholar 

  2. Deveikis, A., Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., Góźdź, A., Pȩdrak, A.: Symbolic algorithm for generating the orthonormal Bargmann–Moshinsky basis for \(\rm SU(3)\) group. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2018. LNCS, vol. 11077, pp. 131–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99639-4_9

    Chapter  Google Scholar 

  3. Vinitsky, S., et al.: On generation of the Bargmann-Moshinsky basis of SU(3) group. J. Phys. Conf. Ser. 1194, 012109 (2019)

    Article  Google Scholar 

  4. Gozdz, A., Pedrak, A., Gusev, A.A., Vinitsky, S.I.: Point symmetries in the nuclear SU(3) partner groups model. Acta Phys. Polonica B Proc. Suppl. 11, 19–28 (2018)

    Article  Google Scholar 

  5. Bargmann, V., Moshinsky, M.: Group theory of harmonic oscillators (II). Nucl. Phys. 23, 177–199 (1961)

    Article  Google Scholar 

  6. Moshinsky, M., Patera, J., Sharp, R.T., Winternitz, P.: Everything you always wanted to know about \(SU(3)\supset O(3)\). Ann. Phys. (N.Y.) 95, 139–169 (1975)

    Article  MathSciNet  Google Scholar 

  7. Alisauskas, S., Raychev, P., Roussev, R.: Analytical form of the orthonormal basis of the decomposition \(SU(3)\supset O(3)\supset O(2)\) for some \((\lambda,\mu )\) multiplets. J. Phys. G Nucl. Phys. 7, 1213–1226 (1981)

    Article  Google Scholar 

  8. Varshalovitch, D.A., Moskalev, A.N., Hersonsky, V.K.: Quantum Theory of Angular Momentum. Nauka, Leningrad (1975). (also World Scientific (1988))

    Google Scholar 

  9. Raychev, P., Roussev, R.: Matrix elements of the generators of SU(3) and of the basic O(3) scalars in the enveloping algebra of SU(3). J. Phys. G Nucl. Phys. 7, 1227–1238 (1981)

    Article  Google Scholar 

  10. Cseh, J.: Algebraic models for shell-like quarteting of nucleons. Phys. Lett. B 743, 213–217 (2015)

    Article  Google Scholar 

  11. Dytrych, T., et al.: Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei. Comput. Phys. Commun. 207, 202–210 (2016)

    Article  Google Scholar 

  12. Pan, F., Yuan, S., Launey, K.D., Draayer, J.P.: A new procedure for constructing basis vectors of SU(3)\(\supset \)SO(3). Nucl. Phys. A 743, 70–99 (2016)

    Article  Google Scholar 

  13. Asherova, R.M., Smirnov, Y.F.: On asymptotic properties of a quantum number \(\Omega \) in a system with SU(3) symmetry. Repts. Math. Phys. 4, 83–95 (1973)

    Article  Google Scholar 

  14. Draayer, J.P., Akiyama, Y.: Wigner and Racah coefficients for SU3. J. Math. Phys. 14, 1904–1912 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Bogoliubov-Infeld program, Votruba-Blokhintsev program, the RUDN University Program 5-100 and grant of Plenipotentiary of the Republic of Kazakhstan in JINR. AD is grateful to Prof. A. Góźdź for hospitality during visits in Institute of Physics, Maria Curie-Skłodowska University (UMCS).

The authors thank the both referees for their useful comments, remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deveikis, A. et al. (2019). Symbolic-Numerical Algorithm for Large Scale Calculations the Orthonormal \(\mathrm {SU(3)}\) BM Basis. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics