Abstract
At the FSE conference of ToSC 2018, Kranz et al. presented their results on shortest linear programs for the linear layers of several well known block ciphers in literature. Shortest linear programs are essentially the minimum number of 2-input xor gates required to completely describe a linear system of equations. In the above paper the authors showed that the commonly used metrics like d-xor/s-xor count that are used to judge the “lightweightedness” do not represent the minimum number of xor gates required to describe a given MDS matrix. In fact they used heuristic based algorithms of Boyar/Peralta and Paar to find implementations of MDS matrices with even fewer xor gates than was previously known. They proved that the AES mixcolumn matrix can be implemented with as little as 97 xor gates. In this paper we show that the values reported in the above paper are not optimal. By suitably including random bits in the instances of the above algorithms we can achieve implementations of almost all matrices with lesser number of gates than were reported in the above paper. As a result we report an implementation of the AES mixcolumn matrix that uses only 95 xor gates.
In the second part of the paper, we observe that most standard cell libraries contain both 2 and 3-input xor gates, with the silicon area of the 3-input xor gate being smaller than the sum of the areas of two 2-input xor gates. Hence when linear circuits are synthesized by logic compilers (with specific instructions to optimize for area), most of them would return a solution circuit containing both 2 and 3-input xor gates. Thus from a practical point of view, reducing circuit size in presence of these gates is no longer equivalent to solving the shortest linear program. In this paper we show that by adopting a graph based heuristic it is possible to convert a circuit constructed with 2-input xor gates to another functionally equivalent circuit that utilizes both 2 and 3-input xor gates and occupies less hardware area. As a result we obtain more lightweight implementations of all the matrices listed in the ToSC paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_4
Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_1
Avanzi, R.: The QARMA block cipher family: almost MDS matrices over rings with zero divisors, nearly symmetric even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Symmetric Cryptol. 2017(1), 4–44 (2017)
Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_14
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in \(GF(2^n)\) with applications to MDS Matrices. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 625–653. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_23
Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program for computing linear forms. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 168–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_13
Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new cryptographic hash function. Des. Codes Cryptogr. 56(2–3), 141–162 (2010)
Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6_16
Boyar, J., Peralta, R.: C++ implementation of SLP algorithm (2018). http://www.imada.sdu.dk/~joan/xor/Improved2.cc
Barreto, P.S.L.M., Rijmen, V.: The anubis block cipher (2000). Submission to NESSIE project. https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/anubis.zip
Barreto, P.S.L.M., Rijmen, V.: The khazad legacy-level block cipher (2000). Submission to NESSIE project. https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/khazad.zip
Barreto, P.S.L.M., Rijmen, V.: Whirlpool. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn, pp. 1384–1385. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5_626
Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_10
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-04722-4
Fuhs, C., Schneider-Kamp, P.: Synthesizing shortest linear straight-line programs over GF(2) using SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_8
Gauravaram, P., et al.: Grøstl - a SHA-3 candidate. In: Symmetric Cryptography, 11–16 January 2009 (2009)
Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13
Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_22
Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: Towards a general construction of recursive MDS diffusion layers. Des. Codes Cryptogr. 82(1–2), 179–195 (2017)
Kishan Chand Gupta and Indranil Ghosh Ray: Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptogr. Commun. 7(2), 257–287 (2015)
Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique for bit-serial implementations of SPN-based primitives. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 687–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_33
Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3 (2013). Submission to caesar competition. https://competitions.cr.yp.to/round2/joltikv13.pdf
Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168 (2017)
Junod, P., Vaudenay, S.: FOX: a new family of block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_8
Kwon, D., et al.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_32
Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Github repository: shorter linear SLPs for MDS matrices (2018). https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2018(4), 188–211 (2018)
Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_6
Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_7
Paar, C.: Optimized arithmetic for Reed-Solomon encoders. In: Proceedings of IEEE International Symposium on Information Theory, p. 250, June 1997
Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_23
Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish: a 128-bit block cipher (1998). https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)
Sarkar, S., Syed, H.: Analysis of toeplitz MDS matrices. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_1
Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_12
Stoffelen, K.: Optimizing S-box implementations for several criteria using SAT solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_8
Acknowledgments
Subhadeep Banik is supported by the Ambizione Grant PZ00P2_179921, awarded by the Swiss National Science Foundation (SNSF). Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan Society for the Promotion of Science.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Banik, S., Funabiki, Y., Isobe, T. (2019). More Results on Shortest Linear Programs. In: Attrapadung, N., Yagi, T. (eds) Advances in Information and Computer Security. IWSEC 2019. Lecture Notes in Computer Science(), vol 11689. Springer, Cham. https://doi.org/10.1007/978-3-030-26834-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-26834-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26833-6
Online ISBN: 978-3-030-26834-3
eBook Packages: Computer ScienceComputer Science (R0)