[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Shuffle Single Shot Detector

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

Abstract

Real-time object detection is of great significance to embedded mobile platforms. We propose a lightweight object detection network for embedded devices, which we call ShuffleSSD. The ShuffleNet V2 network is used as the backbone, which can effectively reduce the size of the model. In the proposed lightweight detection model, a single shot multi-box detector is adopted and a receptive field block is integrated to obtain high-quality detection results. The evaluation is performed on the public object detection data set (PASCAL VOC) and compared to the most advanced real-time object detection network. The experimental results show that the proposed network has higher detection accuracy than MobileNet-SSD, with smaller network parameters. It is more suitable for real-time object detection on embedded devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large scale image recognition. In: ICLR (2015)

    Google Scholar 

  2. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  3. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  4. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24

    Chapter  Google Scholar 

  5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 580–587. IEEE (2014)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Conference and Workshop on Neural Information Processing Systems, Harrahs, pp. 1106–1114 (2012)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, Piscataway, pp. 1440–1448. IEEE (2015)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Conference and Workshop on Neural Information Processing Systems, Montreal, pp. 92–99 (2015)

    Google Scholar 

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 779–788. IEEE (2016)

    Google Scholar 

  13. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, pp. 6517–6525. IEEE (2017)

    Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  15. Fu, C.Y., et al.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: International Conference on Computer Vision, Venice, pp. 2999–3007. IEEE (2017)

    Google Scholar 

  17. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, pp. 4203–4212. IEEE (2018)

    Google Scholar 

  18. Wang, R.J., Li, X., Ao, S., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. arXiv preprint arXiv:1804.06882 (2018)

  19. Kim, K.H., Hong, S., Roh, B., Cheon, Y., Park, M.: PVANET: deep but lightweight neural networks for real-time object detection. arXiv preprint arXiv:1608.08021 (2018)

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381 (2018)

  21. Iandola, F.N., et al.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  22. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, San Francisco, pp. 4278–4284 (2017)

    Google Scholar 

  24. Chen, L.C., Papandreou, G., Schro, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangshuo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Wang, J., Miao, Z., Li, Y., Wang, J. (2019). Shuffle Single Shot Detector. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics