Abstract
Real-time object detection is of great significance to embedded mobile platforms. We propose a lightweight object detection network for embedded devices, which we call ShuffleSSD. The ShuffleNet V2 network is used as the backbone, which can effectively reduce the size of the model. In the proposed lightweight detection model, a single shot multi-box detector is adopted and a receptive field block is integrated to obtain high-quality detection results. The evaluation is performed on the public object detection data set (PASCAL VOC) and compared to the most advanced real-time object detection network. The experimental results show that the proposed network has higher detection accuracy than MobileNet-SSD, with smaller network parameters. It is more suitable for real-time object detection on embedded devices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large scale image recognition. In: ICLR (2015)
Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 580–587. IEEE (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Conference and Workshop on Neural Information Processing Systems, Harrahs, pp. 1106–1114 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23
Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, Piscataway, pp. 1440–1448. IEEE (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Conference and Workshop on Neural Information Processing Systems, Montreal, pp. 92–99 (2015)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 779–788. IEEE (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, pp. 6517–6525. IEEE (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Fu, C.Y., et al.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: International Conference on Computer Vision, Venice, pp. 2999–3007. IEEE (2017)
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, pp. 4203–4212. IEEE (2018)
Wang, R.J., Li, X., Ao, S., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. arXiv preprint arXiv:1804.06882 (2018)
Kim, K.H., Hong, S., Roh, B., Cheon, Y., Park, M.: PVANET: deep but lightweight neural networks for real-time object detection. arXiv preprint arXiv:1608.08021 (2018)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381 (2018)
Iandola, F.N., et al.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, San Francisco, pp. 4278–4284 (2017)
Chen, L.C., Papandreou, G., Schro, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Wang, J., Miao, Z., Li, Y., Wang, J. (2019). Shuffle Single Shot Detector. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_62
Download citation
DOI: https://doi.org/10.1007/978-3-030-26766-7_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26765-0
Online ISBN: 978-3-030-26766-7
eBook Packages: Computer ScienceComputer Science (R0)