Abstract
Inspired by the adversarial learning in generative adversarial network, a novel optimization framework named Generative Adversarial Optimization (GAO) is proposed in this paper. This GAO framework sets up generative models to generate candidate solutions via an adversarial process, in which two models are trained alternatively and simultaneously, i.e., a generative model for generating candidate solutions and a discriminative model for estimating the probability that a generated solution is better than a current solution. The training procedure of the generative model is to maximize the probability of the discriminative model. Specifically, the generative model and the discriminative model are in this paper implemented by multi-layer perceptrons that can be trained by the back-propagation approach. As of an implementation of the proposed GAO, for the purpose of increasing the diversity of generated solutions, a guiding vector ever introduced in guided fireworks algorithm (GFWA) has been employed here to help constructing generated solutions for the generative model. Experiments on CEC2013 benchmark suite show that the proposed GAO framework achieves better than the state-of-art performance on multi-modal functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)
Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)
Che, T., et al.: Maximum-likelihood augmented discrete generative adversarial networks. arXiv preprint arXiv:1702.07983 (2017)
Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J.: Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(3), 680–691 (2009)
Chongxuan, L., Xu, T., Zhu, J., Zhang, B.: Triple generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 4088–4098 (2017)
Clerc, M.: Standard particle swarm optimisation from 2006 to 2011. Part. Swarm Cent. 253 (2011)
Dai, W., et al.: Scan: structure correcting adversarial network for chest X-rays organ segmentation. arXiv preprint arXiv:1703.08770 (2017)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
Denton, E., Gross, S., Fergus, R.: Semi-supervised learning with context-conditional generative adversarial networks. arXiv preprint arXiv:1611.06430 (2016)
Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)
Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC 1999 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–3030 (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-Guzik, A.: Objective-reinforced generative adversarial networks (organ) for sequence generation models. arXiv preprint arXiv:1705.10843 (2017)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
Hu, W.W., Tan, Y.: Generating adversarial malware examples for black-box attacks based on GAN (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Kennedy, J.: Swarm intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer, Boston (2006). https://doi.org/10.1007/0-387-27705-6_6
Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8
Koziel, S., Yang, X.S.: Computational Optimization, Methods and Algorithms, vol. 356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20859-1
Kusner, M.J., Hernández-Lobato, J.M.: GANs for sequences of discrete elements with the Gumbel-softmax distribution. arXiv preprint arXiv:1611.04051 (2016)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Lehman, J., Chen, J., Clune, J., Stanley, K.O.: Safe mutations for deep and recurrent neural networks through output gradients. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 117–124. ACM (2018)
Li, J., Tan, Y.: Loser-out tournament-based fireworks algorithm for multimodal function optimization. IEEE Trans. Evol. Comput. 22(5), 679–691 (2018)
Li, J., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3214–3221. IEEE (2014)
Li, J., Zheng, S., Tan, Y.: The effect of information utilization: Introducing a novel guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–166 (2017)
Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212(34), Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, pp. 281–295 (2013)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)
Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A.N.: Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 42(4), 965–997 (2014)
Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017. LNCS, vol. 10735, pp. 534–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3_51
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)
Tan, K.C., Chiam, S.C., Mamun, A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197(2), 701–713 (2009)
Tan, Y.: Fireworks Algorithm. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46353-6
Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44
Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1526–1535 (2018)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances In Neural Information Processing Systems, pp. 613–621 (2016)
Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)
Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Zheng, S., Janecek, A., Li, J., Tan, Y.: Dynamic search in fireworks algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3222–3229. IEEE (2014)
Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2069–2077. IEEE (2013)
Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 14(1), 27–41 (2017)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)
Acknowledgement
This work was supported by the Natural Science Foundation of China (NSFC) under grant no. 61673025 and 61375119 and also Supported by Beijing Natural Science Foundation (4162029), and partially supported by National Key Basic Research Development Plan (973 Plan) Project of China under grant no. 2015CB352302.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, Y., Shi, B. (2019). Generative Adversarial Optimization. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2019. Lecture Notes in Computer Science(), vol 11655. Springer, Cham. https://doi.org/10.1007/978-3-030-26369-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-26369-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26368-3
Online ISBN: 978-3-030-26369-0
eBook Packages: Computer ScienceComputer Science (R0)