Abstract
The generalized self-shrinking generator is a sequence generator that produces binary sequences with good cryptographic properties. On the other hand, the binomial sequences are a well-defined class of sequences that can be obtained considering infinite successions of binomial coefficients modulo 2. In this work, we see that the generalized sequences can be computed as a finite binary sum of binomial sequences. Moreover, the cryptographic parameters of the generalized sequences can be studied in terms of the binomial sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cardell, S.D., Fúster-Sabater, A.: Linear models for the self-shrinking generator based on CA. J. Cell. Automata 11(2–3), 195–211 (2016)
Cardell, S.D., Fúster-Sabater, A.: Recovering the MSS-sequence via CA. Procedia Comput. Sci. 80, 599–606 (2016)
Cardell, S.D., Fúster-Sabater, A.: Modelling the shrinking generator in terms of linear CA. Adv. Math. Commun. 10(4), 797–809 (2016)
Cardell, S.D., Fúster-Sabater, A.: The t-modified self-shrinking generator? In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10860, pp. 653–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93698-7_50
Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_3
Fluhrer, S., Lucks, S.: Analysis of the E\(_0\) encryption system. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 38–48. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X_3
Fúster-Sabater, A., García-Mochales, P.: A simple computational model for acceptance/rejection of binary sequence generators. Appl. Math. Model. 31(8), 1548–1558 (2007)
Fúster-Sabater, A., Caballero-Gil, P.: Chaotic modelling of the generalized self-shrinking generator. Appl. Soft Comput. 11(2), 1876–1880 (2011)
Fúster-Sabater, A.: Generation of cryptographic sequences by means of difference equations. Appl. Math. Inf. Sci. 8(2), 1–10 (2014)
Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)
Hu, Y., Xiao, G.: Generalized self-shrinking generator. IEEE Trans. Inf. Theor. 50(4), 714–719 (2004)
Jenkins, C., Schulte, M., Glossner, J.: Instructions and hardware designs for accelerating SNOW 3G on a software-defined radio platform. Analog Integr. Circ. Sig. Process. 69(2–3), 207–218 (2011)
Kanso, A.: Modified self-shrinking generator. Comput. Electr. Eng. 36(1), 993–1001 (2010)
Meier, W., Staffelbach, O.: The self-shrinking generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053436
Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, New York (1997)
Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04101-3
Paul, G., Maitra, S.: RC4 Stream Cipher and its Variants. CRC Press, Taylor and Francis Group, Boca Raton (2012)
Acknowledgements
Research partially supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación, and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project COPCIS (TIN2017-84844-C2-1-R) and by Comunidad de Madrid (Spain) under project CYNAMON (P2018/TCS-4566), also co-funded by European Union FEDER funds. The first author was supported by CAPES (Brazil).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix A
Appendix B
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cardell, S.D., Fúster-Sabater, A. (2019). Binomial Characterization of Cryptographic Sequences. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-24289-3_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24288-6
Online ISBN: 978-3-030-24289-3
eBook Packages: Computer ScienceComputer Science (R0)