Abstract
Learning analytics brings considerable challenges in the field of e-learning. Researchers increasingly use the technological advancements emerging from learning analytics in order to support the digital education. The way learning analytics is used, can vary. It can be used to provide learners with information to reflect on their achievements and patterns of behavior in relation to others, or to identify students requiring extra support and attention, or to help teachers plan supporting interventions for functional groups such as course teams. In view of the above, this paper employs learning analytics and presents the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs. Furthermore, it presents a multi module model consisting of the identification of target material, curriculum improvement, cognitive states and behavior prediction and personalization in order to support learners and further enhance their learning experience. The evaluation results are very promising and show that learning analytics can bring new insights that can benefit learners, educators and administrators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Convention Document. The Asilomar Convention for Learning Research in Higher Education. http://asilomar-highered.info/asilomar-convention-20140612.pdf (2014).
References
Chatti, M.A., Dyckhoff, A.L., Schroeder, U., Thüs, H.: A reference model for learning analytics. Int. J. Technol. Enhanced Learn. 4(5/6), 318–331 (2012)
Hung, J.L., Hsu, Y.C., Rice, K.: Integrating data mining in program evaluation of k-12 online education. Educ. Technol. Soc. 15(3), 27–41 (2012)
Romero, C., Ventura, S.: Educational data mining: a review of the state of the art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(6), 601–618 (2010)
Clow, D.: An overview of learning analytics. Teach. High. Educ. 18(6), 683–695 (2013)
Scheffel, M., Drachsler, H., Stoyanov, S., Specht, M.: Quality indicators for learning analytics. Educ. Technol. Soc. 17(4), 117–132 (2014)
Troussas, C., Krouska, A., Virvou, M.: Automatic predictions using LDA for learning through social networking services. In: 2017 IEEE 29th international conference on tools with artificial intelligence (ICTAI), Boston, MA, pp. 747–751 (2017)
Karthikeyan, K., Kavipriya, P.: On Improving student performance prediction in education systems using enhanced data mining techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 7(5), 935–941 (2017)
Acharya, A., Sinha, D.: Early prediction of students performance using machine learning techniques. Int. J. Comput. Appl. 107(1), 37–43 (2014)
Troussas, C., Virvou, M., Espinosa, K.J.: Using visualization algorithms for discovering patterns in groups of users for tutoring multiple languages through social networking. J. Netw. 10(12), 668–674 (2015)
Kavitha, G., Raj, L.: Educational data mining and learning analytics—educational assistance for teaching and learning. Int. J. Comput. Organ. Trends 41(1), 21–25 (2017)
Troussas, C., Espinosa, K.J., Virvou, M.: Intelligent advice generator for personalized language learning through social networking sites. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), Corfu, 2015, pp. 1–5 (2015)
Shorfuzzamana, M., Shamim Hossainbc, M., Nazir, A., Muhammadd, G., Alamri, A.: Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Comput. Hum. Behav. (2018) (in press)
Gašević, D., Kovanović, V., Joksimović, S.: Piecing the learning analytics puzzle: a consolidated model of a field of research and practice. Learn. Res. Pract. 3(1), 63–78 (2017)
Dyckhoff, A.L., Zielke, D., Bültmann, M., Chatti, M.A., Schroeder, U.: Design and implementation of a learning analytics toolkit for teachers. J. Educ. Technol. Soc. 15(3), 58–76 (2012)
Papamitsiou, Z., Economides, A.A.: Learning analytics and educational data mining in practice: a systematic literature review of empirical evidence. Educ. Technol. Soc. 17(4), 49–64 (2014)
Nunn, S., Avella, J.T., Kanai, T., Kebritchi, M.: Learning analytics methods, benefits, and challenges in higher education: a systematic literature review. Online Learn. 20(2), 13–29 (2016)
Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S.H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M.Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C., Toll, D.: Educational data mining and learning analytics in programming: literature review and case studies. In: The 20th Annual Conference on Innovation and Technology in Computer Science Education—Working Group Reports, ACM, New York, NY, pp. 41–63 (2015)
Troussas, C., Virvou, M., Alepis, E.: Comulang: towards a collaborative e-learning system that supports student group modeling. SpringerPlus 2(1), 1–9 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Troussas, C., Krouska, A., Virvou, M. (2020). Using a Multi Module Model for Learning Analytics to Predict Learners’ Cognitive States and Provide Tailored Learning Pathways and Assessment. In: Virvou, M., Alepis, E., Tsihrintzis, G., Jain, L. (eds) Machine Learning Paradigms. Intelligent Systems Reference Library, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-030-13743-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-13743-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13742-7
Online ISBN: 978-3-030-13743-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)