Abstract
The state complexity of a regular language \(L_m\) is the number m of states in a minimal deterministic finite automaton (DFA) accepting \(L_m\). The state complexity of a regularity-preserving binary operation on regular languages is defined as the maximal state complexity of the result of the operation, where the two operands range over all languages of state complexities \({\le }m\) and \({\le }n\), respectively. We consider the deterministic and nondeterministic state complexity of pseudocatenation. The pseudocatenation of two words x and y with respect to an antimorphic involution \(\theta \) is the set \(\{xy,x\theta (y)\}\). This operation was introduced in the context of DNA computing as the generator of pseudopowers of words (a pseudopower of a word u is a word in \(u \{u,\theta (u)\}^*\)). We prove that the state complexity of the pseudocatenation of languages \(L_m\) and \(L_n\), where \(m, n \ge 3\), is at most \((m-1)(2^{2n} - 2^{n+1} + 2) + 2^{2n-2} - 2^{n-1} + 1\). Moreover, for \(m, n \ge 3\) there exist languages \(L_m\) and \(L_n\) over an alphabet of size 4, whose pseudocatenation meets the upper bound. We also prove that the state complexity of the positive pseudocatenation closure of a regular language \(L_n\) has an upper bound of \(2^{2n-1} - 2^n +1\), and that this bound can be reached, with the witness being a language over an alphabet of size 4.
This research was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant R2824A01, and a University of Waterloo School of Computer Science Grant to L.K.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brzozowski, J., Liu, D.: Universal witnesses for state complexity of basic operations combined with reversal. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 72–83. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39274-0_8
Brzozowski, J., Liu, D.: Universal witnesses for state complexity of boolean operations and concatenation combined with star. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 30–41. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39310-5_5
Brzozowski, J.A., Kari, L., Li, B., Szykuła, M.: State complexity of overlap assembly. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 109–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94812-6_10
Caron, P., Luque, J.G., Patrou, B.: State complexity of multiple catenation. arXiv:1607.04031 (2016)
Cho, D.J., Han, Y.S., Kim, H., Palioudakis, A., Salomaa, K.: Duplications and pseudo-duplications. Int. J. Unconv. Comput. 12(2–3), 157–168 (2016)
Cho, D.J., Han, Y.S., Ko, S.K., Salomaa, K.: State complexity of inversion operations. Theoret. Comput. Sci. 610, 2–12 (2016)
Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations: catenation-union and catenation-intersection. Int. J. Found. Comput. Sci. 22(08), 1797–1812 (2011)
Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with two basic operations. Theoret. Comput. Sci. 437, 82–102 (2012)
Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations: catenation-star and catenation-reversal. Int. J. Found. Comput. Sci. 23(01), 51–66 (2012)
Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret. Comput. Sci. 411(3), 617–630 (2010)
Domaratzki, M., Okhotin, A.: State complexity of power. Theoret. Comput. Sci. 410(24–25), 2377–2392 (2009)
Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Automata Lang. Comb. 21(4), 251–310 (2016)
Gao, Y., Yu, S.: State complexity of four combined operations composed of union, intersection, star and reversal. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 158–171. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22600-7_13
Gao, Y., Yu, S.: State complexity of combined operations with union, intersection, star and reversal. Fundamenta Informaticae 116, 79–92 (2012)
Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inf. Process. Lett. 59(2), 75–77 (1996)
Kari, L., Konstantinidis, S., Losseva, E., Sosik, P., Thierrin, G.: A formal language analysis of DNA hairpin structures. Fundamenta Informaticae 71, 453–475 (2006)
Kari, L., Kulkarni, M.: Generating the pseudo-powers of a word. J. Automata Lang. Comb. 19(1–4), 157–171 (2014)
Kari, L., Mahalingam, K.: Watson-Crick conjugate and commutative words. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77962-9_29
Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput. Syst. Sci. 75, 113–121 (2009)
Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language operations combined with reversal. Inf. Comput. 206(9–10), 1178–1186 (2008)
de Luca, A., Luca, A.D.: Pseudopalindrome closure operators in free monoids. Theoret. Comput. Sci. 362(1–3), 282–300 (2006)
Rampersad, N.: The state complexity of \(L^2\) and \(L^k\). Inf. Process. Lett. 98(6), 231–234 (2006)
Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoret. Comput. Sci. 383(2–3), 140–152 (2007)
Salomaa, A., Salomaa, K., Yu, S.: Undecidability of state complexity. Int. J. Comput. Math. 90(6), 1310–1320 (2013)
Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_2
Yu, S., Salomaa, K., Zhuang, Q.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kari, L., Ng, T. (2019). State Complexity of Pseudocatenation. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-13435-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13434-1
Online ISBN: 978-3-030-13435-8
eBook Packages: Computer ScienceComputer Science (R0)