Abstract
In cloud computing, data processing is delegated to a remote party for efficiency and flexibility reasons. A practical user requirement usually is that the confidentiality and integrity of data processing needs to be protected. In the common scenarios of cloud computing today, this can only be achieved by assuming that the remote party does not in any form act maliciously. In this paper, we propose an approach that avoids having to trust a single entity. Our approach is based on two concepts: (1) the technical abstraction of sealed computation, i.e., a technical mechanism to confine the processing of data within a tamper-proof hardware container, and (2) the additional role of an auditing party that itself cannot add functionality to the system but is able to check whether the system (including the mechanism for sealed computation) works as expected. We discuss the abstract technical and procedural requirements of these concepts and explain how they can be applied in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
While privacy has many definitions, here we explicitly use the term Privacy and not Confidentiality to emphasize end users’ privacy (as individuals) against the providers and operators of the system (as organizations).
References
Aazam, M., Khan, I., Alsaffar, A.A., Huh, E.N.: Cloud of things: integrating internet of things and cloud computing and the issues involved. In: 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 414–419. IEEE (2014)
Alam, S., Chowdhury, M.M., Noll, J.: SenaaS: an event-driven sensor virtualization approach for Internet of Things cloud. In: 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications (NESEA), pp. 1–6. IEEE (2010)
Alhanahnah, M., Bertok, P., Tari, Z.: Trusting cloud service providers: trust phases and a taxonomy of trust factors. IEEE Cloud Comput. 4(1), 44–54 (2017)
Allianz Deutschland AG: Allianz BonusDrive User Guide (2017). https://www.allianz.de/docs/auto/BonusDrive-UserGuide.pdf. Accessed 28 Jan 2018
Allianz Press Release: (in German) Nicht alle jungen Fahrer sind Straßen-Rowdies (2017). https://www.allianzdeutschland.de/-nicht-alle-jungen-fahrer-sind-strassen-rowdies-/id_77853754/index. Accessed 28 Jan 2018
Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted cloud with haven. In: 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2014, Broomfield, CO, USA, October 6–8, pp. 267–283 (2014). https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
Cloud Security Alliance: Security Guidance for Critical Areas of Focus in Cloud Computing v3.0. Technical report Cloud Security Alliance (2011). https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/csaguide.v3.0.pdf
Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81 (2011). https://doi.org/10.1007/s10207-011-0124-7
Derikx, S., de Reuver, M., Kroesen, M.: Can privacy concerns for insurance of connected cars be compensated? Electron. Markets 26(1), 73–81 (2016). https://doi.org/10.1007/s12525-015-0211-0
Dyer, J.G., et al.: Building the IBM 4758 secure coprocessor. IEEE Comput. 34(10), 57–66 (2001). https://doi.org/10.1109/2.955100
Ge, C., Ohoussou, A.K.: Sealed storage for trusted cloud computing. In: 2010 International Conference On Computer Design and Applications, vol. 5, pp. V5-335–V5-339, June 2010
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178 (2009). http://doi.acm.org/10.1145/1536414.1536440
Georgiopoulou, Z., Lambrinoudakis, C.: Literature review of trust models for cloud computing. In: 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 208–213, July 2016
Habib Mahbub, S., Hauke, S., Ries, S., Mühlhäuser, M.: Trust as a facilitator in cloud computing: a survey. J. Cloud Comput. 1, 19 (2012). https://doi.org/10.1186/2192-113X-1-19
HUK-Coburg: (in German) Mit Sicherheit fahren und sparen. Unser Smart Driver Programm für junge Fahrer (2017). https://www.huk.de/fahrzeuge/kfz-versicherung/smart-driver.html. Accessed 28 Jan 2018
Karapiperis, D., et al.: Usage-based insurance and vehicle telematics: insurance market and regulatory implications. Technical report 1, National Association of Insurance Commisioners (NAIC), CIPR Study Series (2015)
Li, X.Y., Zhou, L.T., Shi, Y., Guo, Y.: A trusted computing environment model in cloud architecture. In: 2010 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 2843–2848, July 2010
Maene, P., Götzfried, J., de Clercq, R., Müller, T., Freiling, F., Verbauwhede, I.: Hardware-based trusted computing architectures for isolation and attestation. IEEE Trans. Comput. 99, 1–1 (2017). https://doi.org/10.1109/TC.2017.2647955
Mell, P., Grance, T.: Effectively and securely using the cloud computing paradigm. NIST Inf. Technol. Lab. 2(8), 304–311 (2009)
Morris Jr., J.H.: Protection in programming languages. Commun. ACM 16(1), 15–21 (1973). https://doi.org/10.1145/361932.361937
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, 19 May–22 May 2013, pp. 238–252 (2013). https://doi.org/10.1109/SP.2013.47
Rizvi, S., Ryoo, J., Liu, Y., Zazworsky, D., Cappeta, A.: A centralized trust model approach for cloud computing. In: 2014 23rd Wireless and Optical Communication Conference (WOCC), pp. 1–6, May 2014
Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a new abstraction for building trusted cloud services. In: Presented as part of the 21st USENIX Security Symposium (USENIX Security 12), pp. 175–188. USENIX, Bellevue, WA (2012). https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/santos
Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17 May–21 May 2015, pp. 38–54 (2015). https://doi.org/10.1109/SP.2015.10
Soleymanian, M., Weinberg, C., Zhu, T.: Sensor data, privacy, and behavioral tracking: does usage-based auto insurance benefit drivers? Technical report, Sauder School of Business (University of British Columbia) & Krannert School of Management (Purdue University) (2017). https://news.ubc.ca/wp-content/uploads/2017/06/UBI_Paper_Latex_Marketing_Science-with-name.pdf
Utimaco IS GmbH: Hardware Security Modules (HSMs) are the core business focus for Utimaco (2018). https://hsm.utimaco.com/products/. Accessed 10 Jan 2018
Wagner, S., Krauß, C., Eckert, C.: Lightweight attestation and secure code update for multiple separated microkernel tasks. In: Proceedings of 16th International Conference on Information Security, ISC 2013, Dallas, Texas, USA, 13–15 November 2013, pp. 20–36 (2013). https://doi.org/10.1007/978-3-319-27659-5_2
Acknowledgments
The authors would like to thank Nico Döttling, Johannes Götzfried, Tilo Müller and Hubert Jäger for hints and useful comments on earlier versions of this paper. This research is conducted under and supported by the “Privacy&Us” Innovative Training Network (EU H2020 MSCA ITN, grant agreement No. 675730).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Abdullah, L., Freiling, F., Quintero, J., Benenson, Z. (2019). Sealed Computation: Abstract Requirements for Mechanisms to Support Trustworthy Cloud Computing. In: Katsikas, S., et al. Computer Security. SECPRE CyberICPS 2018 2018. Lecture Notes in Computer Science(), vol 11387. Springer, Cham. https://doi.org/10.1007/978-3-030-12786-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-12786-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12785-5
Online ISBN: 978-3-030-12786-2
eBook Packages: Computer ScienceComputer Science (R0)