[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Securing Bioinformatics Cloud for Big Data: Budding Buzzword or a Glance of the Future

  • Chapter
  • First Online:
Recent Advances in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 823))

  • 852 Accesses

Abstract

Insight to utilize the Big data of Bioinformatics information generated by a paradigm; Cloud Computing is coming up as a guarantee to deal with big information storage and scrutiny challenges in the Bioinformatics field. Cloud computing is viewed to be a cost effectual technique to process and accumulate this immense quantity of data with parallel processing tools and carried as “Services” through the internet. Due to its fast and efficient performance for data processing on cloud clusters and easy to use environments, The Hadoop parallel programming framework is dominantly used. This document will be bearing in the direction of the productive course for economical Bioinformatics clouds for the Big data and also the challenges that would obstruct Bioinformatics Big data to take a stride towards the cloud. In this document, we state an outline of the applications of Bioinformatics clouds, merits, and limitations of the current research activity methods used for storing Big Data in Bioinformatics. The paper mentions how the existing dilemma can be addressed from the perspective of Cloud computing services in addition to Bioinformatics tools. For ensuring trust, a simulation comparing the trust values for different Cloud providers is being illustrated in Fog server. For Future enhancements, efforts are being made to build up an efficient cloud data storage system employing different Bioinformatics tools ensuring security so that various Healthcare organizations are benefited by this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galbraith. Frontiers in genomic assay technologies the grand challenges in enabling data-intensive biological research. Front. Genet. (2011). https://doi.org/10.3389/fgene.2011.00026

  2. Merelli, I.: Managing, analyzing, and integrating big data in medical bioinformatics: open problems and future perspectives. BioMed Res. Int. Hindawi Publishing Corporation article id:134023 (2014). http://dx.doi.org/10.1155/2014/134023

  3. Oliveira, G.S.S., Edward, R., et al.: ACOsched: a scheduling algorithm in a federated cloud infrastructure for bioinformatics applications. Bioinf. Biomed. (BIBM) IEEE (2013). https://doi.org/10.1109/bibm.2013.6732620

  4. Marx, V.: The Big Challenges of Big Data, Technology Feature Nature 255, vol. 498 (2013)

    Article  Google Scholar 

  5. Driscoll, O.A.: Big data, hadoop and cloud computing in genomics. J. Biomed. Inf. Elsevier (2013). http://dx.doi.org/10.1016/j/jbi.2013.07.001

  6. Yang, A., Troup, M., et al.: Scalability and validation of big data bioinformatics software. Comput. Struct. Biotechnol. J. Elsevier 15, 379–386 (2017)

    Article  Google Scholar 

  7. Fernandez, A., del Rio, S., et al.: Big data with cloud computing: an insight into the computing environment. In: MapReduce Programming frameworks, vol. 4, pp. 38–409. Wiley (2014)

    Google Scholar 

  8. Ibrar, Y., Salimah, M., et al.: The rise of big data on cloud computing. Inf. Syst. Elsevier 47, 98–115 (2014)

    Google Scholar 

  9. Oracle and Big Data. http://www.oracle.com/us/technologies/big-data/index.html

  10. Thakur, R.S., Bandopadhyay, R.: Role of cloud computing in Bioinformatics research for handling the huge biological data. In: Biology of Useful Plants and Microbes Chapter 20 Narosa Publishing House

    Google Scholar 

  11. Nemade P.: Big Data in bioinformatics & the era of cloud computing. IOSR J. Comput. Eng. (IOSR-JCE) 14(2), 53–56 (2013). e-ISSN: 2278-0661

    Google Scholar 

  12. Mu, A., Kuo, H.: Opportunities and challenges of cloud computing to improve health care services. J. Med. Internet Res. 13(3) (2011). https://doi.org/10.2196/jmir.1867

    Article  Google Scholar 

  13. Luo, J.: Big data application in biomedical research and healthcare. Biomed. Inf. Insights Libertas Acad. 8 (2016). https://doi.org/10.4137/bii.s31559

    Article  Google Scholar 

  14. Hua, G.J., Chuan Yi ,T., et al.: Cloud computing service framework for bioinformatics tools. BIBM IEEE (2015). https://doi.org/10.1109/bibm.2015.735899

  15. Jerico, R., Bethwaite, B., et al.: Development of a cloud-based bioinformatics training platform, briefings in bioinformatics, pp. 1–8 (2016). https://doi.org/10.1093/bib/bbw032

  16. Calabrese, B., Cannataro, M.: Cloud Computing in Bioinformatics: Current Solutions and Challenges (2016). http://doi.org/10.7287/peerj.preprints.2261v1

  17. Shanahan, P.H.: Bioinformatics on the Cloud Computing Platform Azure 9(7) Plusone e102642 (2014)

    Google Scholar 

  18. Prachi, S.: Big Genomic data in bio-informatics cloud applied microbiology: open access 2(2) (2016). https://doi.org/10.4172/2471-9315.1000113

  19. Hsu, H.C.: Biocloud: cloud computing for biological, genomics, and drug design. In: BioMed Research International Hindawi Publishing Corporation Article Id 909470 (2013)

    Google Scholar 

  20. Samuel, A.V.: CloVR: A Virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinf. http://www.biomedcentral.com/1471-2015/12/356 (2015)

  21. Dowlin, N., Laine, K., et al.: Manual for using homomorphic encryption for bioinformatics. Proc. IEEE 105(3) IEEE (2017)

    Google Scholar 

  22. Misirli, G., Madsen, C., et al.: Constructing synthetic biology workflows in the cloud. Eng. Biol. IET 1(1), 61–65 (2017). https://doi.org/10.1049/enb.2017.0001

    Article  Google Scholar 

  23. Moghaddasi, H., Tabrizi, T.A.: Applications of cloud computing in health systems. Global J. Health Sci. 9(6) (2017)

    Article  Google Scholar 

  24. Kumar, V.: Cloud computing using bioinformatics MapReduce applications. In: Colossal data Analysis, and Networking (CDAN), IEEE (2016). https://doi.org/10.1109/cdan.2016.7570893

  25. Calabrese, B.: Cloud computing in bioinformatics: current solutions and challenges. PeerJPreprints (2016). http://doi.org/10.7287/peerj.preprints.2261v1

  26. Celesti, A.: New trends in Biotechnology: the point on NGS cloud computing solutions. In: IEEE Workshop on ICT Solutions for eHealth (2016). 978-1-5090-0679-3/16/$31.00

    Google Scholar 

  27. Guan, X., et al.: Cancer metastases: challenges and oppurtunities. Acta Pharmaceutica Sinica. B. 5(5):402–418 (2015)

    Article  Google Scholar 

  28. Afgan, E., Krampis, K., et al.: Building and provisioning bioinformatics environments on public and private clouds. MIPRO IEEE (2015). https://doi.org/10.1109/mipro.2015.7160269

  29. Lukas, F., Tomislav, L., et al.: Delivering bioinformatics MapReduce applications in the cloud. MIPRO (2014). https://doi.org/10.1109/mipro.2014.68595930

  30. Coutinho, R., Drummond, L., et al.: Evaluating grasp-based cloud dimensioning for comparative genomics: a practical approach. In: Cluster Computing (CLUSTER). IEEE (2014). https://doi.org/10.1109/cluster.2014.6968789

  31. Lin, L.Y.: Enabling large scale biomedical analysis in the cloud. BioMed Research International, Hindawi Publishing Corporation (2013). http://dx.doi.org/10.1155/2013/185679

  32. Gabriel, D.: Food production vs biodiversity: comparing organic and conventional agriculture. J. Appl. Ecol. 50(2) (2013)

    Article  Google Scholar 

  33. Che, H.L.: Cloud computing-based tagSNP selection algorithm for human genome data. Int. J. Mol. Sci. 16, 1096–1110 (2015)

    Google Scholar 

  34. Yixue, L., Chen, L.: Big biological data: challenges and opportunities. In: Genomics Proteomics Bioinformatics (2014). http://dx.doi.org/10.1016/j.gpb.2014.10.001

  35. Nguyen, T.: CloudAligner: a fast and full featured MapReduce based tool for sequence mapping. BMC Res. Notes 4(1), 171 (2011)

    Google Scholar 

  36. Schatz, C., Langmead, B., et al.: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25(11), 1363–1369 (2009)

    Article  Google Scholar 

  37. Luca, P.: MapReducing a genomic sequencing workflow. In: Proceedings of the 2nd International Workshop on MapReduce and its Applications, pp. 67–74. ACM (2011)

    Google Scholar 

  38. Schatz, C.M.: Cloud computing and the DNA data race. Nature Biotechnol. 28(7), 691–693 (2010)

    Article  Google Scholar 

  39. Langmead, B.: Searching for SNPs with cloud computing. Genome Biol. 10(11) (2009)

    Article  Google Scholar 

  40. Gunarathne: Cloud computing paradigms for pleasingly parallel biomedical applications. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed computing, HDPC, pp. 460–469. ACM (2010)

    Google Scholar 

  41. Ben: CloudScale RNA-sequencing differential expression analysis with myrna. Genome Biol. 11, 1–11 (2010)

    Google Scholar 

  42. Hong, D.: RNA sequence analysis tool on the cloud. Bioinformatics 28, 721–723 (2012)

    Article  Google Scholar 

  43. Jourdren, L.: Eoulsan: a cloud computing base framework facilitating high throughput sequencing analysis. Bioinformatics 28, 1542–1543 (2012)

    Article  Google Scholar 

  44. Hydra, L.S.: A scalable proteomic search engine which utilizes the Hadoop distributed computing framework. BMC Bioinf. 13 (2012)

    Google Scholar 

  45. Matsunaga, A.: CloudBlast: combining MapReduce and virtualization on distributed resources for bioinformatics applications. In: IEEE Fourth International Conference On eScienceIndiana, pp. 222–229. USA (2008)

    Google Scholar 

  46. Niemenmaa, M.: Hadoop-BAM: directly manipulating next-generation sequencing data in the cloud. Bioinformatics 28, 876–877 (2012)

    Article  Google Scholar 

  47. Merriman, B.: SeqWare query engine: storing and searching Sequence data in the cloud. BMC Bioinf. 11 (2010)

    Google Scholar 

  48. McKenna, A.: The genome analysis toolkit: MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 1297–1303 (2010)

    Article  Google Scholar 

  49. Huang, H.L.: BlueSNP: a package for highly scalable genomic-wide association studies using Hadoop clusters. Bioinformatics 29, 135–136 (2013)

    Article  Google Scholar 

  50. Angiuoli, B.D., Matalka, M., et al.: CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinf. 12 (2011)

    Google Scholar 

  51. Krampis, K.: Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community. BMC Bioinf. 13 (2012)

    Google Scholar 

  52. Shi, L., Wang, Z., et al.: A case study of tuning MapReduce for efficient bioinformatics in the cloud. Parallel Comput. 61, 83–95 (2017)

    Article  MathSciNet  Google Scholar 

  53. MeteAkgun, A., Sagiroglu, S., et al.: Privacy preserving processing of genomic data: a survey. J. Biomed. Inf. Elsevier 56, 103–111 (2015)

    Google Scholar 

  54. Mushegian. Grand challenges in Bioinformatics and Computational Biology. Front. Genet. (2011). https://doi.org/10.3389/fgene.2011.00060

  55. Heitor, H., Aleteia, P., et al.: Attribute-based access control in federated clouds: a case study in bioinformatics. Inf. Syst. Technol. IEEE (2017). https://doi.org/10.23919/cisti.2017.7975855

  56. Yamamota, U., Oguchi, M.: A decentralized system of genome secret search implemented with fully homomorphic encryption. In: Smart Computing (SMARTCOMP), IEEE (2017). https://doi.org/10.1109/smartcomp.2017.7946977

  57. Namasudra, S., Roy, P., et al.: Time efficient secure DNA based access control model for cloud computing environment. FGCS Elsevier 73, 90–105 (2017)

    Article  Google Scholar 

  58. Silva, S.B.S., Deborah, H.M., et al.: Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and data basing. Forensic Sci. Int. Genet. Elsevier 31, 40–47 (2017)

    Google Scholar 

  59. Abdulunabi, M., Haqbi, A., et al.: A distributed framework for health information exchange using smartphone technologies. J. Biomed. Inf. Elsevier 69, 230–250 (2017)

    Google Scholar 

  60. Goyat, S., Jain, S.: A secure cryptographic cloud communication using DNA cryptographic technique. In: Inventive Computation Technologies (ICICT), IEEE (2016). https://doi.org/10.1109/inventive.2016.7830158

  61. Nepal, S.: TruXy: trusted storage cloud for scientific workflows. IEEE Trans. Cloud Comput. 5(3), 428–442 (2016). https://doi.org/10.1109/tcc.2015.2489638

    Article  Google Scholar 

  62. Siddaramappa, V., Ramesh, B.K.: Cryptography and bioinformatics techniques for secure information transmission over insecure channels. Appl. Theoret. Comput. Commun. Technol. IEEE (2015). https://doi.org/10.1109/icatcct.2015.7456870

  63. Liu, B., Madduri, R., et al.: Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses. J. Biomed. Inf. Science direct 49, 119–133 (2014)

    Article  Google Scholar 

  64. Razick: The eGenVar Data management system-cataloging and sharing sensitive data and metadata for life sciences, database (2014)

    Google Scholar 

  65. Rodrigues: Analysis of the security and privacy requirements of cloud-based electronic health record systems. J. Med. Internet Res. (2013)

    Google Scholar 

  66. Alex: Data management in the cloud: challenges and oppurtunities. Mogan & Claypool Publishers. ISBN:9781608459247 (2011)

    Google Scholar 

  67. Ney, P., Koscher, K., et al.: Computer security, privacy, and DNA sequencing: compromising computers with synthesized DNA, privacy leaks, and more. In: 26th UNENIX Security Symposium (2017). ISBN: 978-1-931971-40-9

    Google Scholar 

  68. Hamid Abdulaziz, H., Rahman Mizanur, Md.S.K., et al.: A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography, IEEE ACCESS (2017). https://doi.org/10.1109/access.2017.2757844

    Article  Google Scholar 

  69. Gonzalez, N., Goya, W., et al.: Fog Computing: Data Analytics and Cloud Distributed Processing on the Network Edges, IEEE (2016). 978-1-5090-3339-3/16/$31.00_c

    Google Scholar 

  70. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, ACSIS, vol. 2, pp. 1–8. IEEE (2014). https://doi.org/10.15439/2014f503

  71. Yi, S.: Security and Privacy Issues of Fog Computing, WASA (2015). https://doi.org/10.1007/978-3-319-21837-3_67

    Chapter  Google Scholar 

  72. Hashem, T., Yaqoob, I., Anuar, B., et al.: The rise of “big data” on cloud computing: review and open research issues. Inform Syst 47:98–115 Elsevier (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijeta Seth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seth, B., Dalal, S., Kumar, R. (2019). Securing Bioinformatics Cloud for Big Data: Budding Buzzword or a Glance of the Future. In: Kumar, R., Wiil, U. (eds) Recent Advances in Computational Intelligence. Studies in Computational Intelligence, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-030-12500-4_8

Download citation

Publish with us

Policies and ethics