[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Understanding of Time-Based Trends in Virtual Learning Environment Stakeholders’ Behaviour

  • Conference paper
  • First Online:
The Challenges of the Digital Transformation in Education (ICL 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 916))

Included in the following conference series:

Abstract

The analysis of data collected from the interaction of users in the virtual learning environment attracts much attention today as a promising approach for advancing the current understanding of the learning content development, learning process in general as well as VLE stakeholders’ behaviour. The learning analytics research has not frequently focused on analysing of time-based trends in VLE stakeholders’ behaviour or their preferences in the same VLE over different years of deployment, as well as on analysing of temporal trends in the selection of different activity types over a typical period. Therefore, the paper deals with several methods, which can be used for analysing VLE stakeholders’ behaviour over several academic years. The paper introduces a case study, which shows that several analytical and data mining methods can give useful insight into the changing behaviour of the stakeholders of the VLE over a longer period. Finally, the paper summarises the obtained results and discusses possible implications and limitations of the applied approach from different perspectives in the context of the management of the virtual learning environment, VLE stakeholders and educational content improvement at the institutional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 279.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sclater, N.: Learning analytics. The current state of play in the UK higher and further education. JISC. Effective Learning Analytics. Using data and analytics to support students. Effective Learning Analytics. JISC (2014)

    Google Scholar 

  2. Ferguson, R., et al.: Research evidence on the use of learning analytics - implications for education policy (2016)

    Google Scholar 

  3. Bichsel, J.: Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations. EDUCAUSE Center for Applied Research (2012)

    Google Scholar 

  4. Siemens, G., Dawson, S., Lynch, G.: Improving the Quality and Productivity of the Higher Education Sector. Office of Learning and Teaching, Australian Government, Canberra, Australia (2014)

    Google Scholar 

  5. Adejo, O., Connolly, T.: Learning analytics in higher education development: a roadmap. J. Educ. Pract. 8, 156–163 (2017)

    Google Scholar 

  6. Larusson, J.A., White, B.: Learning Analytics. From Research to Practice. Springer, New York (2014)

    Google Scholar 

  7. Lang, C., Siemens, G., Wise, A., Gašević, D.: The handbook of learning analytics. Soc. Learn. Analyt. Res. (2017)

    Google Scholar 

  8. Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.D.: Handbook of Educational Data Mining. Chapman & Hall/CRC (2010)

    Google Scholar 

  9. Navarro, A.M., Moreno-Ger, P.: Comparison of clustering algorithms for learning analytics with educational datasets. Int. J. Interact. Multimed. Artif. Intell. 5, 1–8 (2018)

    Google Scholar 

  10. Preidys, S., Sakalauskas, L.: Analysis of students’ study activities in virtual learning environments using data mining methods. Ukio Technologinis ir Ekonominis Vystymas 16, 94–108 (2010)

    Google Scholar 

  11. Mlynarska, E., Greene, D., Cunningham, P.: Time Series Clustering of Moodle Activity Data. AICS 2016 (2016)

    Google Scholar 

  12. Greller, W., Drachsler, H.: Translating learning into numbers: a generic framework for learning analytics. Educ. Technol. Soc. 15, 42–57 (2012)

    Google Scholar 

  13. Skalka, J., Drlík, M., Švec, P.: Knowledge discovery from university information systems for purposes of quality assurance implementation. In: 2013 IEEE Global Engineering Education Conference (EDUCON), pp. 591–596 (2013)

    Google Scholar 

  14. Munk, M., Drlík, M., Benko, L., Reichel, J.: Quantitative and qualitative evaluation of sequence patterns found by application of different educational data preprocessing techniques. IEEE Access 5, 8989–9004 (2017)

    Article  Google Scholar 

  15. Munk, M., Kapusta, J., Švec, P.: Data preprocessing evaluation for web log mining: reconstruction of activities of a web visitor. Procedia Comput. Sci. 1, 2273–2280 (2010)

    Article  Google Scholar 

  16. Munk, M., Benko, L.: Using entropy in web usage data preprocessing. Entropy 20, 67 (2018)

    Article  MathSciNet  Google Scholar 

  17. Munk, M., Drlík, M.: Chapter 10 - methodology of predictive modelling of students’ behaviour in virtual learning environment A2 - Caballé, Santi. In: Clarisó, R. (ed.) Formative Assessment, Learning Data Analytics and Gamification, pp. 187–216. Academic Press, Boston (2016)

    Chapter  Google Scholar 

  18. Sheard, J.: Basics of statistical analysis of interactions data from web-based learning environments. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (eds.) Handbook of Educational Data Mining. CRC Press, A Chapman & Hall Book (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Cultural and Educational Grant Agency of the Ministry of Education of the Slovak Republic under the contract KEGA-029UKF-4/2018 and by the project “IT Academy – Education for 21st Century” under the contract ITMS 312011F057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Drlík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drlík, M. (2020). Understanding of Time-Based Trends in Virtual Learning Environment Stakeholders’ Behaviour. In: Auer, M., Tsiatsos, T. (eds) The Challenges of the Digital Transformation in Education. ICL 2018. Advances in Intelligent Systems and Computing, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-030-11932-4_31

Download citation

Publish with us

Policies and ethics