[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On a Digital Version of Pseudo-Differential Operators and Its Applications

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Included in the following conference series:

  • 1391 Accesses

Abstract

We develop discrete variant of a theory of pseudo-differential operators and equations. For some canonical domains we obtain solvability results for such equations and use these results to construct approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eskin, G.: Boundary Value Problems for Elliptic Pseudodifferential Equations. AMS, Providence (1981)

    MATH  Google Scholar 

  2. Taylor, M.E.: Pseudodifferential Operators. Princeton Univ. Press, Princeton (1981)

    Book  Google Scholar 

  3. Trevés, F.: Introduction to Pseudodifferential Operators and Fourier Integral Operators. Springer, New York (1980). https://doi.org/10.1007/978-1-4684-8780-0

    Book  MATH  Google Scholar 

  4. Samarskii, A.A.: The Theory of Difference Schemes. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  5. Ryaben’kii, V.S.: Method of Difference Potentials and its Applications. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56344-7

    Book  MATH  Google Scholar 

  6. Vasilyev, V.B.: The periodic Cauchy kernel, the periodic Bochner kernel, and discrete pseudo-differential operators. In: AIP Conference Proceedings, vol. 1863, p. 14014 (2017). https://doi.org/10.1063/1.4992321

  7. Vasilyev, V.B.: Discreteness, periodicity, holomorphy, and factorization. In: Constanda, C., Dalla Riva, M., Lamberti, P.D., Musolino, P. (eds.) Integral Methods in Science and Engineering, Theoretical Technique, vol. 1, pp. 315–324. Birkhäuser, Cham (2017). https://doi.org/10.1007/978-3-319-59384-5_28

  8. Vasilyev, A.V., Vasilyev, V.B.: Discrete approximations for multidimensional singular integral operators. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187, pp. 706–712. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-57099-0_81

    Chapter  Google Scholar 

  9. Vasilyev, A.V., Vasilyev, V.B.: Two-scale estimates for special finite discrete operators. Math. Model. Anal. 22(3), 300–310 (2017). https://doi.org/10.3846/13926292.2017.1307790

    Article  MathSciNet  MATH  Google Scholar 

  10. Vasilyev, A.V., Vasilyev, V.B.: On a digital approximation for pseudo-differential operators. Proc. Appl. Math. Mech. 17(1), 763–764 (2017). https://doi.org/10.1002/pamm.201710349

    Article  MATH  Google Scholar 

  11. Vasilyev, V.B.: On some equations on non-smooth manifolds: canonical domains and model operators. In: Kalmenov, T., Nursultanov, E., Ruzhansky, M., Sadybekov, M. (eds.) FAIA 2017. PROMS, vol. 216, pp. 363–375. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-67053-9_34

    Chapter  Google Scholar 

  12. Vasilyev, V.B.: Discrete pseudo-differential operators and boundary value problems in a half-space and a cone. Lobachevskii J. Math. 39(2), 289–296 (2018). https://doi.org/10.1134/S1995080218020270

    Article  MathSciNet  MATH  Google Scholar 

  13. Vasilev, A.V., Vasilev, V.B.: Periodic Riemann problem and discrete convolution equations. Differ. Equ. 51(5), 652–660 (2015). https://doi.org/10.1134/S0012266115050080

    Article  MathSciNet  Google Scholar 

  14. Vasilyev, A.V., Vasilyev, V.B.: Discrete singular operators and equations in a half-space. Azerb. J. Math. 3(1), 84–93 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work is supported by the State contract of the Russian Ministry of Education and Science (contract No 1.7311.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir B. Vasilyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasilyev, V.B. (2019). On a Digital Version of Pseudo-Differential Operators and Its Applications. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics