Abstract
We develop discrete variant of a theory of pseudo-differential operators and equations. For some canonical domains we obtain solvability results for such equations and use these results to construct approximate solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Eskin, G.: Boundary Value Problems for Elliptic Pseudodifferential Equations. AMS, Providence (1981)
Taylor, M.E.: Pseudodifferential Operators. Princeton Univ. Press, Princeton (1981)
Trevés, F.: Introduction to Pseudodifferential Operators and Fourier Integral Operators. Springer, New York (1980). https://doi.org/10.1007/978-1-4684-8780-0
Samarskii, A.A.: The Theory of Difference Schemes. CRC Press, Boca Raton (2001)
Ryaben’kii, V.S.: Method of Difference Potentials and its Applications. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56344-7
Vasilyev, V.B.: The periodic Cauchy kernel, the periodic Bochner kernel, and discrete pseudo-differential operators. In: AIP Conference Proceedings, vol. 1863, p. 14014 (2017). https://doi.org/10.1063/1.4992321
Vasilyev, V.B.: Discreteness, periodicity, holomorphy, and factorization. In: Constanda, C., Dalla Riva, M., Lamberti, P.D., Musolino, P. (eds.) Integral Methods in Science and Engineering, Theoretical Technique, vol. 1, pp. 315–324. Birkhäuser, Cham (2017). https://doi.org/10.1007/978-3-319-59384-5_28
Vasilyev, A.V., Vasilyev, V.B.: Discrete approximations for multidimensional singular integral operators. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187, pp. 706–712. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-57099-0_81
Vasilyev, A.V., Vasilyev, V.B.: Two-scale estimates for special finite discrete operators. Math. Model. Anal. 22(3), 300–310 (2017). https://doi.org/10.3846/13926292.2017.1307790
Vasilyev, A.V., Vasilyev, V.B.: On a digital approximation for pseudo-differential operators. Proc. Appl. Math. Mech. 17(1), 763–764 (2017). https://doi.org/10.1002/pamm.201710349
Vasilyev, V.B.: On some equations on non-smooth manifolds: canonical domains and model operators. In: Kalmenov, T., Nursultanov, E., Ruzhansky, M., Sadybekov, M. (eds.) FAIA 2017. PROMS, vol. 216, pp. 363–375. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-67053-9_34
Vasilyev, V.B.: Discrete pseudo-differential operators and boundary value problems in a half-space and a cone. Lobachevskii J. Math. 39(2), 289–296 (2018). https://doi.org/10.1134/S1995080218020270
Vasilev, A.V., Vasilev, V.B.: Periodic Riemann problem and discrete convolution equations. Differ. Equ. 51(5), 652–660 (2015). https://doi.org/10.1134/S0012266115050080
Vasilyev, A.V., Vasilyev, V.B.: Discrete singular operators and equations in a half-space. Azerb. J. Math. 3(1), 84–93 (2013)
Acknowledgments
The work is supported by the State contract of the Russian Ministry of Education and Science (contract No 1.7311.2017/8.9).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Vasilyev, V.B. (2019). On a Digital Version of Pseudo-Differential Operators and Its Applications. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_70
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)