[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3D Lidar Data Segmentation Using a Sequential Hybrid Method

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

  • 977 Accesses

Abstract

This chapter proposes a sequential hybrid method for 3D Lidar data segmentation. The presented approach provides more reliable results against the under-segmentation issue, i.e., assigning several objects to one segment, by combining spatial and temporal information to discriminate nearby objects in the data. For instance, it is common for pedestrians to get under-segmented with their neighboring objects. Combining temporal and spatial cues allow us to resolve such ambiguities. After getting the temporal features, we propose a sequential hybrid approach using the mean-shift method and a sequential variant of distance dependent Chinese Restaurant Process (ddCRP). The segmentation blobs are spatially extracted from the scene with a connected components algorithm. Then, as a post-processing, the mean-shift seeks the number of possible objects in the state space of each blob. If the mean-shift algorithm determines an under-segmentation, the sequential ddCRP performs the final partition in this blob. Otherwise, the queried blob remains the same and it is assigned as a segment. Compared to the other recent methods in the literature, our framework significantly reduces the under-segmentation errors while running in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  Google Scholar 

  2. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  3. Blei, D.M., Frazier, P.I.: Distance dependent Chinese restaurant processes. J. Mach. Learn. Res. 12, 2461–2488 (2011)

    Google Scholar 

  4. Tuncer, M.A.Ç., Schulz, D.: Monte Carlo based distance dependent Chinese restaurant process for segmentation of 3D LIDAR data using motion and spatial features. In: 18th IEEE International Conference on Information Fusion (Fusion), Washington, DC, pp. 112–118 (2015)

    Google Scholar 

  5. Tuncer, M.A.Ç., Schulz, D.: A hybrid method using temporal and spatial information for 3D LIDAR data segmentation. In: 14th International Conference on Informatics in Control, Automation and Robotics, Madrid, Spain (2017). https://doi.org/10.5220/0006471101620171

  6. Tuncer, M.A.Ç., Schulz, D.: Sequential distance dependent Chinese restaurant processes for motion segmentation of 3D LIDAR data. In: 19th IEEE International Conference on Information Fusion (Fusion), Heidelberg, Germany, pp. 758–765 (2016)

    Google Scholar 

  7. Tuncer, M.A.Ç., Schulz, D.: Integrated object segmentation and tracking for 3D LIDAR data. In: 13th International Conference on Informatics in Control, Automation and Robotics, Lisbon, Portugal, pp. 344–351 (2016)

    Google Scholar 

  8. Douillard, B., et al.: On the segmentation of 3D LIDAR point clouds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2798–2805 (2011)

    Google Scholar 

  9. Moosmann, F., Pink, O., Stiller, C.: Segmentation of 3D LIDAR data in non-flat urban environments using a local convexity criterion. In: IEEE Intelligent Vehicles Symposium, pp. 215–220 (2009)

    Google Scholar 

  10. Urmson, C., et al.: Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot. 25, 425–466 (2008) (Wiley Online Library)

    Google Scholar 

  11. Montemerlo, M., et al.: Junior: The Stanford entry in the urban challenge. J. Field Robot. 25, 569–597 (2008) (Wiley Online Library)

    Google Scholar 

  12. Petrovska, A., Thrun, S.: Model Based Vehicle Tracking for Autonomous Driving in Urban Environments. The MIT Press, Zurich (2008)

    Google Scholar 

  13. Morton, P., Douillard, B., Underwood, J.: An evaluation of dynamic object tracking with 3D LIDAR. In: Proceedings of Australasian Conference on Robotics and Automation, Melbourne, Australia (2011)

    Google Scholar 

  14. Choi, J., Ulbrich, S., Lichte, B., Maurer, M.: Multi-target tracking using a 3D-LIDAR sensor for autonomous vehicles. In: Proceedings of the 16th International IEEE Annual Conference on Intelligent Transportation Systems. The Hague, The Netherlands (2013)

    Google Scholar 

  15. Azim, A., Aycard, O.: Detection, classification and tracking of moving objects on a 3D environment. In: Intelligent Vehicles Symposium, Alcala de Henares, Spain (2012)

    Google Scholar 

  16. Klasing, K., Wollherr, D., Buss, M.: A clustering method for efficient segmentation of 3D laser data. In: IEEE Robotics and Automation Conference (ICRA), pp. 4043–4048 (2008)

    Google Scholar 

  17. Steinhauser, D., Ruepp, O., Burschka, D.: Motion segmentation and scene classification from 3D LIDAR data. In: IEEE Intelligent Vehicles Symposium, pp. 398–403 (2008)

    Google Scholar 

  18. Asvadi, A., Peixoto, P., Nunes, U.: Detection and tracking of moving objects using 2.5 D motion grids. In: IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 788–793 (2015)

    Google Scholar 

  19. Teichman, A., Levinson, J., Thrun, S.: Towards 3D object recognition via classification of arbitrary object tracks. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4034–4041 (2011)

    Google Scholar 

  20. Himmelsbach, M., Wuensche, H.J.: Tracking and classification of arbitrary objects with bottom-up top-down detection. In: Intelligent Vehicles Symposium, Alcala de Henares, Spain (2012)

    Google Scholar 

  21. Held, D., Guillory, D., Rebsamen, B., Thrun, S., Savarese, S.: A probabilistic framework for real-time 3D segmentation using spatial, temporal, and semantic cues. In: Proceedings of Robotics: Science and Systems, AnnArbor, Michigan (2016). https://doi.org/10.15607/RSS.2016.XII.024

  22. Herbst, E., Ren, X., Fox, D.: RGB-D flow: dense 3-D motion estimation using color and depth. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2276–2282 (2013)

    Google Scholar 

  23. Stckler, J., Behnke, S.: Efficient dense rigid-body motion segmentation and estimation in RGB-D video. Int. J. Comput. Vis. 113(3), 233–245 (2015)

    Article  MathSciNet  Google Scholar 

  24. Hickson, S., Birchfield, S., Essa, I., Christensen, H.: Efficient hierarchical graph-based segmentation of RGBD videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 344–351 (2014)

    Google Scholar 

  25. Xu, C., Whitt, S., Corso, J.J.: Flattening supervoxel hierarchies by the uniform entropy slice. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2240–2247 (2013)

    Google Scholar 

  26. Xu, C., Xiong, C., Corso, J.J.: Streaming hierarchical video segmentation. In: European Conference on Computer Vision, pp. 626–639. Springer, Berlin (2012)

    Google Scholar 

  27. Driessen, J.N., Biemond, J.: Motion field estimation for complex scenes. In: Proceedings of SPIE, pp. 511–521 (1991)

    Google Scholar 

  28. Sellent, A., Eisemann, M., Goldlucke, B., Cremers, D., Magnor, M.: Motion field estimation from alternate exposure images. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1577–1589 (2011) (IEEE Computer Society)

    Google Scholar 

  29. Stein, F.: Efficient computation of optical flow using the census transform. In: Proceedings of the 26th DAGM Symposium. Lecture Notes in Computer Science, vol. 3175, pp. 79–86 (2004)

    Google Scholar 

  30. Rabe, C., Franke, U., Gehrig, S.: Fast detection of moving objects in complex scenarios. In: Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, pp. 398–403 (2007)

    Google Scholar 

  31. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust and accurate 3D motion field estimation from stereo image sequences in real-time. In: Proceedings of European Conference on Computer Vision, Heraklion, Greece (2010)

    Google Scholar 

  32. Franke, U., Rabe, C., Badino, H., Gehrig, S.K.: 6D vision: fusion of stereo and motion for robust environment perception. In: Proceedings of the 27th German Association for Pattern Recognition (DAGM) Symposium, Vienna, Austria, pp. 216–223 (2005)

    Google Scholar 

  33. Li, Q., et al.: Motion field estimation for a dynamic scene using a 3D LIDAR. Sensors 14, 16672–16691 (2014)

    Google Scholar 

  34. Pitman, J.: Combinatorial Stochastic Process. Lecture Notes for St. Flour Summer School. Springer, New York (2002)

    Google Scholar 

  35. Socher, R., Maas, A., Manning, C.D.: Spectral Chinese restaurant process: nonparametric clustering based on similarities (2012)

    Google Scholar 

  36. Yang, C., Xie, L., Zhou, X.: Unsupervised broadcast news story segmentation using distance dependent Chinese restaurant processes. In: IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), pp. 4062–4066 (2014)

    Google Scholar 

  37. Ghosh, S., Ungureanu, A.B., Sudderth, E.B., Blei, D.: Spatial distance dependent Chinese restaurant processes for image segmentation. In: NIPS, pp. 1476–1484 (2011)

    Google Scholar 

  38. Ghosh, S., Sudderth, E., Loper, E., Black, M.: From deformations to parts: motion-based segmentation of 3D objects. In: Advances in Neural Information Processing Systems, pp. 2006–2014 (2012)

    Google Scholar 

  39. Velodyne LIDAR, High Definition LIDAR HDL-64E S2 Specifications. http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx

  40. Bar-Shalom, Y.: Tracking and Data Association. Academic Press Professional, Inc., Boston (1987)

    Google Scholar 

  41. Alparone, L., Barni, M., Bartolini, F., Cappellini, V.: Adaptively weighted vector-median filters for motion-fields smoothing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2267–2270 (1996)

    Google Scholar 

  42. Raiffa, H., Schlaifer, R.: Applied Statistical Decision Theory. Graduate School of Business Administration. Harvard University, Division of Research (1961)

    Google Scholar 

  43. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 721–741 (1984)

    Google Scholar 

  44. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Texts in Statistical Science, 2nd edn. Chapman and Hall/CRC, Boca Raton (2003)

    Google Scholar 

  45. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  46. Fritsch, J., Kuhnl, T., Geiger, A.: A new performance measure and evaluation benchmark for road detection algorithms. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1693–1700 (2013)

    Google Scholar 

  47. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Computer Vision and Pattern Recognition Conference (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the EU’s Seventh Framework Programme under grant agreement no. 607400 (TRAX, Training network on tRAcking in compleX sensor systems) http://www.trax.utwente.nl/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ali Çağrı Tuncer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tuncer, M.A.Ç., Schulz, D. (2020). 3D Lidar Data Segmentation Using a Sequential Hybrid Method. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_26

Download citation

Publish with us

Policies and ethics