[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Covering and Packing of Rectilinear Subdivision

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Included in the following conference series:

  • 708 Accesses

Abstract

We study a class of geometric covering and packing problems for bounded closed regions on the plane. We are given a set of axis-parallel line segments that induce a planar subdivision with bounded (rectilinear) faces. We are interested in the following problems.  

(P1) Stabbing-Subdivision::

Stab all closed bounded faces by selecting a minimum number of points in the plane.

(P2) Independent-Subdivision::

Select a maximum size collection of pairwise non-intersecting closed bounded faces.

(P3) Dominating-Subdivision::

Select a minimum size collection of bounded faces such that every other face has a non-empty intersection (i.e., sharing an edge or a vertex) with some selected face.

  We show that these problems are \(\mathsf { NP }\)-hard. We even prove that these problems are \(\mathsf { NP }\)-hard when we concentrate only on the rectangular faces of the subdivision. Further, we provide constant factor approximation algorithms for the Stabbing-Subdivision problem.

S. Pandit—Partially supported by the Indo-US Science & Technology Forum (IUSSTF) under the SERB Indo-US Postdoctoral Fellowship scheme with grant number 2017/94, Department of Science and Technology, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight independent set of rectangles. In: FOCS, pp. 400–409 (2013)

    Google Scholar 

  2. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012)

    Article  MathSciNet  Google Scholar 

  3. Chuzhoy, J., Ene, A.: On approximating maximum independent set of rectangles. In: FOCS, pp. 820–829 (2016)

    Google Scholar 

  4. Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., Zaks, J.: Guarding rectangular art galleries. Discret. Appl. Math. 50(2), 149–157 (1994)

    Article  MathSciNet  Google Scholar 

  5. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12, 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  6. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002)

    Article  MathSciNet  Google Scholar 

  7. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MathSciNet  Google Scholar 

  8. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discret. Math. 5(3), 422–427 (1992)

    Article  MathSciNet  Google Scholar 

  9. Korman, M., Poon, S.H., Roeloffzen, M.: Line segment covering of cells in arrangements. Inf. Process. Lett. 129, 25–30 (2018)

    Article  MathSciNet  Google Scholar 

  10. van Leeuwen, E.J.: Optimization and approximation on systems of geometric objects. Ph.D. thesis, University of Amsterdam (2009)

    Google Scholar 

  11. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  12. Mudgal, A., Pandit, S.: Covering, hitting, piercing and packing rectangles intersecting an inclined line. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 126–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_10

    Chapter  MATH  Google Scholar 

  13. Mustafa, N.H., Raman, R., Ray, S.: Settling the APX-hardness status for geometric set cover. In: FOCS, pp. 541–550 (2014)

    Google Scholar 

  14. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret. Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  15. Pandit, S.: Dominating set of rectangles intersecting a straight line. In: Canadian Conference on Computational Geometry, CCCG, pp. 144–149 (2017)

    Google Scholar 

  16. Vazirani, V.V.: Approximation Algorithms. Springer, Hecidelberg (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satyabrata Jana or Supantha Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jana, S., Pandit, S. (2019). Covering and Packing of Rectilinear Subdivision. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics