[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Approach to Robustness in the Stable Roommates Problem and Its Comparison with the Stable Marriage Problem

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

Recently a robustness notion for matching problems based on the concept of a (ab)-supermatch is proposed for the Stable Marriage problem (SM). In this paper we extend this notion to another matching problem, namely the Stable Roommates problem (SR). We define a polynomial-time procedure based on the concept of reduced rotation poset to verify if a stable matching is a (1, b)-supermatch. Then, we adapt a local search and a genetic local search procedure to find the (1, b)-supermatch that minimises b in a given SR instance. Finally, we compare the two models and also create different SM and SR instances to present empirical results on the robustness of these instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The parentheses are used to indicate priority.

  2. 2.

    Our datasets are publicly available at: github.com/begumgenc/rsmData.

  3. 3.

    The reader is referred to the online version for coloured version.

References

  1. Ashlagi, I., Gonczarowski, Y.A.: Dating strategies are not obvious. CoRR abs/1511.00452 (2015)

    Google Scholar 

  2. Aziz, H., Biró, P., Gaspers, S., de Haan, R., Mattei, N., Rastegari., B.: Stable matching with uncertain linear preferences. CoRR abs/1607.02917 (2016)

    Google Scholar 

  3. Drummond, J., Boutilier, C.: Elicitation and approximately stable matching with partial preferences. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 97–105. AAAI Press (2013)

    Google Scholar 

  4. Genc, B., Siala, M., O’Sullivan, B., Simonin, G.: Finding robust solutions to stable marriage. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 631–637 (2017)

    Google Scholar 

  5. Genc, B., Siala, M., O’Sullivan, B., Simonin, G.: Finding robust solutions to stable marriage. CoRR abs/1705.09218 (2017)

    Google Scholar 

  6. Genc, B., Siala, M., Simonin, G., O’Sullivan, B.: Complexity study for the robust stable marriage problem. In: Theoretical Computer Science (2019)

    Google Scholar 

  7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  8. Hebrard, E.: Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South Wales (2007)

    Google Scholar 

  9. Holland, A., O’Sullivan, B.: Super solutions for combinatorial auctions. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 187–200. Springer, Heidelberg (2005). https://doi.org/10.1007/11402763_14

    Chapter  Google Scholar 

  10. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algorithms 6(4), 577–595 (1985)

    Article  MathSciNet  Google Scholar 

  11. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM J. Comput. 15(3), 655–667 (1986)

    Article  MathSciNet  Google Scholar 

  12. Jacobovic, R.: Perturbation robust stable matching. CoRR abs/1612.08118 (2016)

    Google Scholar 

  13. Kolen, A., Pesch, E.: Genetic local search in combinatorial optimization. Discret. Appl. Math. 48(3), 273–284 (1994)

    Article  MathSciNet  Google Scholar 

  14. Lebedev, D., Mathieu, F., Viennot, L., Gai, A.-T., Reynier, J., De Montgolfier, F.: On using matching theory to understand P2P network design. In: INOC 2007, International Network Optimization Conference (2007)

    Google Scholar 

  15. Lussier, B., Chatila, R., Ingrand, F., Killijian, M.O., Powell, D.: On fault tolerance and robustness in autonomous systems. In: Proceedings of the Third IARP/IEEE-RAS/EURON Joint Workshop on Technical Challenge for Dependable Robots in Human Environments, Manchester, GB, 7–9 September 2004

    Google Scholar 

  16. Pittel, B.: The “stable roommates” problem with random preferences. Ann. Probab. 21, 1441–1477 (1993)

    Article  MathSciNet  Google Scholar 

  17. Siala, M., O’Sullivan, B.: Rotation-based formulation for stable matching. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 262–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_17

    Chapter  Google Scholar 

  18. Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.-J., van Laarhoven, P.J.M., Pesch, E.: Genetic local search algorithms for the traveling salesman problem. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 109–116. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029740

    Chapter  Google Scholar 

Download references

Acknowledgement

This material is based upon works supported by the Science Foundation Ireland under Grant No. 12/RC/2289 which is co-funded under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begum Genc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Genc, B., Siala, M., Simonin, G., O’Sullivan, B. (2019). An Approach to Robustness in the Stable Roommates Problem and Its Comparison with the Stable Marriage Problem. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics