[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improved Subsumption Testing Algorithm for the Optimal-Size Sorting Network Problem

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

In this paper a new method for checking the subsumption relation for the optimal-size sorting network problem is described. The new approach is based on creating a bipartite graph and modelling the subsumption test as the problem of enumerating all perfect matchings in this graph. Experiments showed significant improvements over the previous approaches when considering the number of subsumption checks and the time needed to find optimal-size sorting networks. We were able to generate all the complete sets of filters for comparator networks with 9 channels, confirming that the 25-comparators sorting network is optimal. The running time was reduced more than 10 times, compared to the state-of-the-art result described in [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: An 0(n log n) sorting network. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 1–9. ACM, New York (1983)

    Google Scholar 

  2. Baddar, S.W.A.H., Batcher, K.E.: Designing Sorting Networks: A New Paradigm. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1851-1

    Book  Google Scholar 

  3. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the 30 April–2 May 1968, Spring Joint Computer Conference, pp. 307–314. ACM, New York (1968)

    Google Scholar 

  4. Bundala, D., Závodný, J.: Optimal sorting networks. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 236–247. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04921-2_19

    Chapter  Google Scholar 

  5. Codish, M., Cruz-Filipe, L., Ehlers, T., Müller, M., Schneider-Kamp, P.: Sorting networks: to the end and back again. J. Comput. Syst. Sci. (2016)

    Google Scholar 

  6. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five comparators is optimal when sorting nine inputs (and twenty-nine for ten). In: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 186–193. IEEE (2014)

    Google Scholar 

  7. Codish, M., Cruz-Filipe, L., Schneider-Kamp, P.: The quest for optimal sorting networks: Efficient generation of two-layer prefixes. In: 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 359–366. IEEE (2014)

    Google Scholar 

  8. Ehlers, T., Müller, M.: New bounds on optimal sorting networks. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 167–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6_17

    Chapter  Google Scholar 

  9. Kipfer, P., Westermann, R.: Improved GPU sorting. GPU Gems 2, 733–746 (2005)

    Google Scholar 

  10. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3, 2nd edn. Addison Wesley Longman Publishing Co. Inc., Redwood City (1998)

    MATH  Google Scholar 

  11. Morgenstern, A., Schneider, K.: Synthesis of parallel sorting networks using SAT solvers. In: MBMV, pp. 71–80 (2011)

    Google Scholar 

  12. Parberry, I.: A computer-assisted optimal depth lower bound for nine-inputsorting networks. Math. Syst. Theory 24(1), 101–116 (1991). https://doi.org/10.1007/BF02090393

    Article  MathSciNet  MATH  Google Scholar 

  13. Parberry, I.: On the computational complexity of optimal sorting network verification. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) Parle’ 91 Parallel Architectures and Languages Europe. LNCS, pp. 252–269. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-662-25209-3_18

    Chapter  Google Scholar 

  14. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In: Leong, H.W., Imai, H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 92–101. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63890-3_11

    Chapter  MATH  Google Scholar 

  15. Valsalam, V.K., Miikkulainen, R.: Using symmetry and evolutionary search to minimize sorting networks. J. Mach. Learn. Res. 14, 303–331 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Michael Codish for introducing us to this research topic and Cornelius Croitoru for his valuable comments. Furthermore, we thank Mihai Rotaru for providing us with the computational resources to run our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Frăsinaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frăsinaru, C., Răschip, M. (2019). An Improved Subsumption Testing Algorithm for the Optimal-Size Sorting Network Problem. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics