Abstract
With the popularization of self-driving cars and the rapid development of intelligent transportation, pedestrian detection shows more and more extensive application scenarios in daily life, which have higher and higher application values. It also raises more and more interest from academic community. Pedestrian detection is fundamental in many human-oriented tasks, including trajectory tracking of people, recognition of pedestrian gait, and autopilot recognition of pedestrians to take appropriate response measures. In this context, this paper studies the design and implementation of a pedestrian detection system. The pedestrian detection system of this article is mainly composed of two parts. The first part is a pedestrian detector based on deep learning, and the second part is a graphical interface that interacts with the user. The former part mainly uses the Faster R-RCNN learning model, which can use convolutional neural networks to learn features from the data and extract the features of the image. It can also search the image through RPN network for areas where the target is located and then classify them. In this paper, a complete pedestrian detection system is implemented on the basis of deep learning framework Caffe. Experiments show that the system has high recognition rate and fast recognition speed in real world.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)
Benenson, R., Omran, M., Hosang, J., Schiele, B.: Ten years of pedestrian detection, what have we learned? In: Agapito, L., Bronstein, Michael M., Rother, C. (eds.) ECCV 2014, Part II. LNCS, vol. 8926, pp. 613–627. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_47
Hosang, J., Omran, M., Benenson, R., Schiele, B.: Taking a deeper look at pedestrians. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4073–4082. IEEE (2015)
Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B.: How far are we from solving pedestrian detection? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1259–1267. IEEE (2016)
Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE (2016)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Acknowledgment
This paper is funded by the International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation.
Meantime, all the authors declare that there is no conflict of interests regarding the publication of this article.
We gratefully thank of very useful discussions of reviewers.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Fu, H., Zhang, Z., Zhang, Y., Lin, Y. (2019). Design and Implementation of Pedestrian Detection System. In: Liu, S., Yang, G. (eds) Advanced Hybrid Information Processing. ADHIP 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-030-19086-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-19086-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19085-9
Online ISBN: 978-3-030-19086-6
eBook Packages: Computer ScienceComputer Science (R0)