[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Dilated Residual Network to Model Distantly Supervised Relation Extraction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11448))

Included in the following conference series:

  • 3776 Accesses

Abstract

Distantly supervised relation extraction has been widely used to find relational facts in the text. However, distant supervision inevitably brings in noise that can lead to a bad relation contextual representation. In this paper, we propose a deep dilated residual network (DRN) model to address the noise of in distantly supervised relation extraction. Specifically, we design a module which employs dilated convolution in cascade to capture multi-scale context features by adopting multiple dilation rates. By combining them with residual learning, the model is more powerful than traditional CNN model. Our model significantly improves the performance for distantly supervised relation extraction on the large NYT-Freebase dataset compared to various baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10

    Chapter  Google Scholar 

  2. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2015). http://arxiv.org/abs/1511.07122

  3. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003). http://dl.acm.org/citation.cfm?id=944919.944964

    MathSciNet  MATH  Google Scholar 

  4. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via piecewise convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1753–1762. Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/D15-1203

  5. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 2335–2344. Dublin City University and Association for Computational Linguistics (2014)

    Google Scholar 

Download references

Acknowledgement

This research is funded by the Science and Technology Commission of Shanghai Municipality (No. 18511105502), and Xiaoi Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, L., Yang, Y., Zhu, P., He, L., Yu, Z. (2019). Using Dilated Residual Network to Model Distantly Supervised Relation Extraction. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11448. Springer, Cham. https://doi.org/10.1007/978-3-030-18590-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18590-9_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18589-3

  • Online ISBN: 978-3-030-18590-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics