Abstract
Distantly supervised relation extraction has been widely used to find relational facts in the text. However, distant supervision inevitably brings in noise that can lead to a bad relation contextual representation. In this paper, we propose a deep dilated residual network (DRN) model to address the noise of in distantly supervised relation extraction. Specifically, we design a module which employs dilated convolution in cascade to capture multi-scale context features by adopting multiple dilation rates. By combining them with residual learning, the model is more powerful than traditional CNN model. Our model significantly improves the performance for distantly supervised relation extraction on the large NYT-Freebase dataset compared to various baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_10
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR abs/1511.07122 (2015). http://arxiv.org/abs/1511.07122
Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003). http://dl.acm.org/citation.cfm?id=944919.944964
Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction via piecewise convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1753–1762. Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/D15-1203
Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 2335–2344. Dublin City University and Association for Computational Linguistics (2014)
Acknowledgement
This research is funded by the Science and Technology Commission of Shanghai Municipality (No. 18511105502), and Xiaoi Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhan, L., Yang, Y., Zhu, P., He, L., Yu, Z. (2019). Using Dilated Residual Network to Model Distantly Supervised Relation Extraction. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11448. Springer, Cham. https://doi.org/10.1007/978-3-030-18590-9_75
Download citation
DOI: https://doi.org/10.1007/978-3-030-18590-9_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18589-3
Online ISBN: 978-3-030-18590-9
eBook Packages: Computer ScienceComputer Science (R0)