Abstract
In this paper, we study the stochastic unbounded min-knapsack problem (Min-SUKP). The ordinary unbounded min-knapsack problem states that: There are n types of items, and there is an infinite number of items of each type. The items of the same type have the same cost and weight. We want to choose a set of items such that the total weight is at least W and the total cost is minimized. The Min-SUKP generalizes the ordinary unbounded min-knapsack problem to the stochastic setting, where the weight of each item is a random variable following a known distribution and the items of the same type follow the same weight distribution. In Min-SUKP, different types of items may have different cost and weight distributions. In this paper, we provide an FPTAS for Min-SUKP, i.e., the approximate value our algorithm computes is at most \((1+\epsilon )\) times the optimum, and our algorithm runs in \(poly(1/\epsilon ,n,\log W)\) time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Assaf, D.: Renewal decisions when category life distributions are of phase-type. Math. Oper. Res. 7(4), 557–567 (1982)
Bhalgat, A., Goel, A., Khanna, S.: Improved approximation results for stochastic knapsack problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia (2011)
Bhalgat, A.: A (2 + \(\epsilon \))-approximation algorithm for the stochastic knapsack problem. Manuscript (2012)
Carnes, T., Shmoys, D.: Primal-dual schema for capacitated covering problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_20
Csirik, J., Frenk, J.B.G., Labbe, M., Zhang, S.: Heuristics for the 0-1 min-knapsack problem. Acta Cybern. 10(1–2), 15–20 (1991)
Dean, B.C., Goemans, M.X., Vondrak, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 208–217. IEEE Computer Society, Los Alamitos (2004)
Derman, C., Lieberman, G.J., Ross, S.M.: A renewal decision problem. Manag. Sci. 24(5), 554–561 (1978)
Deshpande, A., Hellerstein, L., Kletenik, D.: Approximation algorithms for stochastic submodular set cover with applications to boolean function evaluation and min-knapsack. ACM Trans. Algorithms 12(3), 28 (2016)
Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman, New York (2002)
Guntzer, M.M., Jungnickel, D.: Approximate minimization algorithms for the 0/1 knapsack and subset-sum problem. Oper. Res. Lett. 26(2), 55–66 (2000)
Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms for correlated knapsacks and non-martingale bandits. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 827–836 (2011)
Han, X., Makino, K.: Online minimization knapsack problem. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12450-1_17
Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM (JACM) 22(4), 463–468 (1975)
Jansen, K., Kraft, S.E.: A faster FPTAS for the unbounded knapsack problem. Eur. J. Comb. 68, 148–174 (2018)
Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In: Kellerer, H., Pferschy, U., Pisinger, D. (eds.) Knapsack Problems, pp. 235–283. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7_9
Li, J., Shi, T.L.: A fully polynomial-time approximation scheme for approximating a sum of random variables. Oper. Res. Lett. 42(3), 197–202 (2014)
Li, J., Yuan, W.: Stochastic combinatorial optimization via poisson approximation. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 971–980. ACM, New York (2013)
Ma, W.: Improvements and generalizations of stochastic knapsack and multi-armed bandit approximation algorithms. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (2014)
Ross, K.W., Tsang, D.H.: The stochastic knapsack problem. IEEE Trans. Commun. 37(7), 740–747 (1989)
Sahni, S.: Approximate algorithms for 0/1 knapsack problem. J. ACM 22(1), 115–124 (1975)
Acknowledgement
The authors would like to thank Jian Li for several useful discussions and the help with polishing the paper. The research is supported in part by the National Basic Research Program of China Grant 2015CB358700, the National Natural Science Foundation of China Grant 61822203, 61772297, 61632016, 61761146003, and a grant from Microsoft Research Asia.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, Z., Zhao, H. (2019). An FPTAS for Stochastic Unbounded Min-Knapsack Problem. In: Chen, Y., Deng, X., Lu, M. (eds) Frontiers in Algorithmics. FAW 2019. Lecture Notes in Computer Science(), vol 11458. Springer, Cham. https://doi.org/10.1007/978-3-030-18126-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-18126-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18125-3
Online ISBN: 978-3-030-18126-0
eBook Packages: Computer ScienceComputer Science (R0)