[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An FPTAS for Stochastic Unbounded Min-Knapsack Problem

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2019)

Abstract

In this paper, we study the stochastic unbounded min-knapsack problem (Min-SUKP). The ordinary unbounded min-knapsack problem states that: There are n types of items, and there is an infinite number of items of each type. The items of the same type have the same cost and weight. We want to choose a set of items such that the total weight is at least W and the total cost is minimized. The Min-SUKP generalizes the ordinary unbounded min-knapsack problem to the stochastic setting, where the weight of each item is a random variable following a known distribution and the items of the same type follow the same weight distribution. In Min-SUKP, different types of items may have different cost and weight distributions. In this paper, we provide an FPTAS for Min-SUKP, i.e., the approximate value our algorithm computes is at most \((1+\epsilon )\) times the optimum, and our algorithm runs in \(poly(1/\epsilon ,n,\log W)\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assaf, D.: Renewal decisions when category life distributions are of phase-type. Math. Oper. Res. 7(4), 557–567 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bhalgat, A., Goel, A., Khanna, S.: Improved approximation results for stochastic knapsack problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia (2011)

    Google Scholar 

  3. Bhalgat, A.: A (2 + \(\epsilon \))-approximation algorithm for the stochastic knapsack problem. Manuscript (2012)

    Google Scholar 

  4. Carnes, T., Shmoys, D.: Primal-dual schema for capacitated covering problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_20

    Chapter  Google Scholar 

  5. Csirik, J., Frenk, J.B.G., Labbe, M., Zhang, S.: Heuristics for the 0-1 min-knapsack problem. Acta Cybern. 10(1–2), 15–20 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Dean, B.C., Goemans, M.X., Vondrak, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 208–217. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  7. Derman, C., Lieberman, G.J., Ross, S.M.: A renewal decision problem. Manag. Sci. 24(5), 554–561 (1978)

    Article  MathSciNet  Google Scholar 

  8. Deshpande, A., Hellerstein, L., Kletenik, D.: Approximation algorithms for stochastic submodular set cover with applications to boolean function evaluation and min-knapsack. ACM Trans. Algorithms 12(3), 28 (2016)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman, New York (2002)

    Google Scholar 

  10. Guntzer, M.M., Jungnickel, D.: Approximate minimization algorithms for the 0/1 knapsack and subset-sum problem. Oper. Res. Lett. 26(2), 55–66 (2000)

    Article  MathSciNet  Google Scholar 

  11. Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms for correlated knapsacks and non-martingale bandits. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 827–836 (2011)

    Google Scholar 

  12. Han, X., Makino, K.: Online minimization knapsack problem. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12450-1_17

    Chapter  MATH  Google Scholar 

  13. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM (JACM) 22(4), 463–468 (1975)

    Article  MathSciNet  Google Scholar 

  14. Jansen, K., Kraft, S.E.: A faster FPTAS for the unbounded knapsack problem. Eur. J. Comb. 68, 148–174 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In: Kellerer, H., Pferschy, U., Pisinger, D. (eds.) Knapsack Problems, pp. 235–283. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7_9

    Chapter  MATH  Google Scholar 

  16. Li, J., Shi, T.L.: A fully polynomial-time approximation scheme for approximating a sum of random variables. Oper. Res. Lett. 42(3), 197–202 (2014)

    Article  MathSciNet  Google Scholar 

  17. Li, J., Yuan, W.: Stochastic combinatorial optimization via poisson approximation. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 971–980. ACM, New York (2013)

    Google Scholar 

  18. Ma, W.: Improvements and generalizations of stochastic knapsack and multi-armed bandit approximation algorithms. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (2014)

    Google Scholar 

  19. Ross, K.W., Tsang, D.H.: The stochastic knapsack problem. IEEE Trans. Commun. 37(7), 740–747 (1989)

    Article  MathSciNet  Google Scholar 

  20. Sahni, S.: Approximate algorithms for 0/1 knapsack problem. J. ACM 22(1), 115–124 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Jian Li for several useful discussions and the help with polishing the paper. The research is supported in part by the National Basic Research Program of China Grant 2015CB358700, the National Natural Science Foundation of China Grant 61822203, 61772297, 61632016, 61761146003, and a grant from Microsoft Research Asia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Jiang or Haoyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Zhao, H. (2019). An FPTAS for Stochastic Unbounded Min-Knapsack Problem. In: Chen, Y., Deng, X., Lu, M. (eds) Frontiers in Algorithmics. FAW 2019. Lecture Notes in Computer Science(), vol 11458. Springer, Cham. https://doi.org/10.1007/978-3-030-18126-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18126-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18125-3

  • Online ISBN: 978-3-030-18126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics