[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sparsity of Integer Solutions in the Average Case

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11480))

Abstract

We examine how sparse feasible solutions of integer programs are, on average. Average case here means that we fix the constraint matrix and vary the right-hand side vectors. For a problem in standard form with m equations, there exist LP feasible solutions with at most m many nonzero entries. We show that under relatively mild assumptions, integer programs in standard form have feasible solutions with O(m) many nonzero entries, on average. Our proof uses ideas from the theory of groups, lattices, and Ehrhart polynomials. From our main theorem we obtain the best known upper bounds on the integer Carathéodory number provided that the determinants in the data are small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliev, I., De Loera, J., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28, 2152–2157 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aliev, I., De Loera, J., Oertel, T., O’Neil, C.: Sparse solutions of linear diophantine equations. SIAM J. Appl. Algebra Geom. 1, 239–253 (2017)

    Article  MathSciNet  Google Scholar 

  3. Aliev, I., Henk, M., Oertel, T.: Integrality gaps of integer knapsack problems. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 25–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_3

    Chapter  MATH  Google Scholar 

  4. Artin, M.: Algebra. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  5. Barvinok, A.: A Course in Convexity, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  6. Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups. J. für die reine und angewandte Mathematik 510, 151–178 (2004)

    MATH  Google Scholar 

  7. Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample to an integer analogue of Carathéodory’s theorem. J. für die reine und angewandte Mathematik 510, 179–185 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theorem. J. Comb. Theory Ser. B 40(1), 63–70 (1986)

    Article  Google Scholar 

  9. Dyer, M., Frieze, A.: Probabilistic analysis of the multidimensional knapsack problem. Math. Oper. Res. 14, 162–176 (1989)

    Article  MathSciNet  Google Scholar 

  10. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34, 564–568 (2006)

    Article  MathSciNet  Google Scholar 

  11. Gomory, R.: On the relation between integer and noninteger solutions to linear programs. Proc. Natl. Acad. Sci. 53, 260–265 (1965)

    Article  MathSciNet  Google Scholar 

  12. Sebő, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 431–455 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Paat .

Editor information

Editors and Affiliations

Appendices

A Proof of Theorem 2

We construct both matrices A and B using a submatrix \(\tilde{A}\), which we construct first. Let \(d \in \mathbb {Z}_{\ge 1}\) and \(p_1< \cdots < p_d\) be prime. For \(i \in \{1, \cdots , d\}\), define \( q_i := \prod _{j=1, j \ne i}^d p_i \) and \(\delta := \prod _{j=1}^d p_i\). Define the matrix \( \tilde{A} := \begin{bmatrix} q_1,&\cdots&q_d,&- \delta \end{bmatrix}. \) The matrix \(\tilde{A}\) has \(d+1\) columns, so \(\sigma ^{\text {asy}}(\tilde{A}) \le 1+d\). The matrix \(\tilde{A}\) is similar to the example in [1, Theorem 2] and the theory of so-called primorials. We claim

$$\begin{aligned} \text {if } b \in \mathbb {Z}_{< 0} \text { and } b \equiv 1 \text { mod } \delta , \text { then } P(\tilde{A},b) \ne \emptyset \text { and } \sigma (\tilde{A},b) = 1 + d. \end{aligned}$$
(20)

Note that \(\gcd (q_1, \cdots , q_d) = 1\). The Frobenius number of \(\{q_1, \cdots , q_d\}\) is the largest integer that cannot be written as a positive integer linear combination of \(q_1, \cdots ,\) and \(q_d\). Hence, if we choose \(\bar{b} \in \mathbb {Z}_{\ge 1}\) to be the Frobenius number of \(\{q_1, \cdots , q_d\}\), then \(b \ge \bar{b}+1\) implies \(P(\tilde{A},b) \ne \emptyset \). If \(b \equiv 1 \text { mod } \delta \), then b is not divisible by \(p_i\) for any \(i \in \{1, \cdots , d\}\). Thus, if \(b \ge \bar{b}+1\) and \(b \equiv 1 \text { mod } \delta \), then \(\sigma (\tilde{A}, b) = d\). Finally, observe that if \(b < 0\), then \(b + k\delta >\bar{b}\) for large enough \(k \in \mathbb {Z}_{\ge 1}\). The only negative column of \(\tilde{A}\) is \(-\delta \), so \(\sigma (\tilde{A},b) = 1+d\). This proves (20).

Now we define the matrix A. Let \(m \in \mathbb {Z}_{\ge 1}\) and define

$$ A := \begin{bmatrix} I^{m-1} ~&0^{(m-1)\times (d+1)} \\ 0^{1 \times (m-1)}&\tilde{A} \end{bmatrix} \in \mathbb {Z}^{m \times (m+d)}, $$

where \(I^k \in \mathbb {Z}^{k \times k}\) is the identity matrix and \(0^{k \times s} \in \mathbb {Z}^{k \times s}\) is the all zero matrix for \(k,s\in \mathbb {Z}_{\ge 1}\). Note that \(\phi ^{\max }(A) = d\). If \(b \in \mathbb {Z}^{m-1}_{> 0} \times \mathbb {Z}_{<0}\) is such that the last component is equivalent to \(1 \text { mod } \delta \), then \(\sigma (A,b) = m+d\) by the arguments above. Now, the set of \(b\in \mathbb {Z}^m\) such that \(P(A,b) \ne \emptyset \) is contained in \(\mathbb {Z}^{m-1}_{\ge 0} \times \mathbb {Z}\). So, for every \(t \in \mathbb {Z}_{\ge 1}\), the set of feasible solutions in \(\{-t\delta , \cdots , t\delta \}^m\) contains \(t(t\delta -1)^{m-1}\) points b such that \(\sigma (A,b) = m+d\). Moreover, if \(t \in \mathbb {Z}_{\ge \bar{b}}\), then \(P(A,b) \ne \emptyset \) for every \(b \in \{0, \cdots , t\delta \}^{m-1}\times \{-t\delta , \cdots , t\delta \}\). Therefore,

$$ \begin{array}{rclcl} &{}\displaystyle \lim _{t \rightarrow \infty } \frac{|\{b \in \{-t, ..., t\} : \sigma (A,b) \le (m-1) + d\}|}{|\{b \in \{-t, ..., t\} : P(A,b) \ne \emptyset \}|} \\ = &{}\displaystyle \lim _{t \rightarrow \infty } \frac{|\{b \in \{-t\delta , ..., t\delta \} : \sigma (A,b) \le (m-1) + d\}|}{|\{b \in \{-t\delta , ..., t\delta \} : P(A,b) \ne \emptyset \}|} \\ \le &{} \displaystyle \lim _{t \rightarrow \infty } \frac{(2t\delta +1)(t\delta +1)^{m-1} - t(t\delta +1)^{m-1}}{(2t\delta +1)(t\delta +1)^{m-1}} &{} <&{} 1. \end{array} $$

Using this and the fact that A has \(m + d\) columns, we have \(\sigma ^{\text {asy}}(A) = m+d\).

Now we define the matrix B. Let \(A \in \mathbb {Z}^{m\times (m+d)}\) be as above. Let \(e^{1 \times (m+1)} \in \mathbb {Z}^{1 \times (m+1)}\) be the all ones matrix and \(U \in \mathbb {Z}^{m\times (m+1)}\). Assume

$$ \bigg | \det \bigg (\begin{bmatrix} U \\ e^{1 \times (m+1)} \end{bmatrix} \bigg )\bigg | =1 $$

and set

$$ B := \begin{bmatrix} U ~&A \\ e^{1 \times (m+1)} ~&0^{1 \times (m+d)} \end{bmatrix} \in \mathbb {Z}^{(m+1) \times (2m+1+d)}. $$

Note that \(\phi ^{\min }(B) = 0\), so Theorem 1 (ii) implies that \(\sigma ^{\text {asy}}(B) \le 2m+2\). Let \(b \in \mathbb {Z}^{m}\times \{0\} \) be such that \(P(B,b) \ne \emptyset \). If \(z \in P(B,b)\), then the first \(m+1\) components of z are zero. So, similarly to above, there are \(b \in \mathbb {Z}^{m+1} \) such that \(\sigma (B,b) = m+d\). Hence, \(\sigma ^{asy}(B) \le 2m+2 < m+d = \sigma (B)\).    \(\square \)

B Proof of Lemma 3

Assume that \(t = 2\). Let \(x := x^1\) and \(y := x^2\). First, we show that \(K \cap (K + x) \cap (K+y) \ne \emptyset \). Since \(v^1, \cdots , v^m\) are linearly independent, K is a full-dimensional simplicial cone. Hence, there exist linearly independent vectors \(a^1, \dots , a^m \in \mathbb {R}^m \) such that \(K = \{ w \in \mathbb {R}^m : (a^i)^\intercal w \le 0 ~ \forall ~ i \in \{1, \dots , m\}\}\) and linearly independent vectors \(r^1, \dots , r^m \in K\) such that \((a^i)^\intercal r^i < 0\) for each \(i \in \{1, \dots , m\}\).

There is a set \( J \subseteq \{1, \cdots , m\}\) such that \((a^j)^\intercal (x-y) > 0\) for each \(j \in J\) and \((a^j)^\intercal (x-y) \le 0\) for each \(j \in \{1, \dots , m\}\setminus J\). For \( j \in \{1, \dots , m\}\), set

$$ \lambda _j := {\left\{ \begin{array}{ll} \max \left\{ 0, -\frac{(a^j)^\intercal x }{(a^j)^\intercal r^j}\right\} , &{} \text {if } j \in \{1, \cdots , m\} \setminus J\\ \\ \max \left\{ -\frac{(a^j)^\intercal (x-y) }{ (a^j)^\intercal r^j}, -\frac{(a^j)^\intercal x }{(a^j)^\intercal r^j}\right\} , &{} \text {if } j \in J. \end{array}\right. } $$

Note that \(\lambda _1, \dots , \lambda _m \in \mathbb {R}_{\ge 0}\), so \( x +\sum _{j=1}^m \lambda _j r^j \in K + x. \) For each \(i \in \{1, \dots , m\}\), it follows that

$$ (a^i)^\intercal \bigg (x +\sum _{j=1}^m \lambda _j r^j - y \bigg ) \le (a^i)^\intercal (x-y) + \lambda _i (a^i)^\intercal r^i \le 0. $$

So, \(x +\sum _{j=1}^m \lambda _j r^j -y \in K\) and \(x +\sum _{j=1}^m \lambda _j r^j \in K + y\). Finally, for each \(i \in \{1, \dots , m\}\), it follows that

$$ (a^i)^\intercal \bigg (x +\sum _{j=1}^m \lambda _j r^j \bigg ) \le (a^i)^\intercal x + \lambda _i (a^i)^\intercal r^i \le 0. $$

Hence, \(x +\sum _{j=1}^m \lambda _j r^j \in K\) and \( K \cap (K+x) \cap (K+y) \ne \emptyset \).

Let \(w \in K \cap (K+x) \cap (K+y) \). Then \(K+ w \subseteq K \cap (K+x) \cap (K+y)\). Because K is full-dimensional, there exists a point \(z \in (K+w) \cap \mathbb {Z}^m\) such that \(z = \sum _{i=1}^m k_i v^i\) for \(k_i \in \mathbb {Z}_{\ge 0}\). Note that \( z \in K + w \subseteq K \) and

$$ K + z \subseteq K + w \subseteq K + \left( K \cap (K+x) \cap (K+y)\right) \subseteq K \cap (K+x) \cap (K+y). $$

For \(t \ge 3\), the result follows by induction.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oertel, T., Paat, J., Weismantel, R. (2019). Sparsity of Integer Solutions in the Average Case. In: Lodi, A., Nagarajan, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2019. Lecture Notes in Computer Science(), vol 11480. Springer, Cham. https://doi.org/10.1007/978-3-030-17953-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17953-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17952-6

  • Online ISBN: 978-3-030-17953-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics