[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detection of Subclinical Keratoconus Using Biometric Parameters

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Abstract

The validation of innovative methodologies for diagnosing keratoconus in its earliest stages is of major interest in ophthalmology. So far, subclinical keratoconus diagnosis has been made by combining several clinical criteria that allowed the definition of indices and decision trees, which proved to be valuable diagnostic tools. However, further improvements need to be made in order to reduce the risk of ectasia in patients who undergo corneal refractive surgery. The purpose of this work is to report a new subclinical keratoconus detection method based in the analysis of certain biometric parameters extracted from a custom 3D corneal model.

This retrospective study includes two groups: the first composed of 67 patients with healthy eyes and normal vision, and the second composed of 24 patients with subclinical keratoconus and normal vision as well. The proposed detection method generates a 3D custom corneal model using computer-aided graphic design (CAGD) tools and corneal surfaces’ data provided by a corneal tomographer. Defined bio-geometric parameters are then derived from the model, and statistically analysed to detect any minimal corneal deformation.

The metric which showed the highest area under the receiver-operator curve (ROC) was the posterior apex deviation.

This new method detected differences between healthy and sub-clinical keratoconus corneas by using abnormal corneal topography and normal spectacle corrected vision, enabling an integrated tool that facilitates an easier diagnosis and follow-up of keratoconus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability

None

References

  1. Rabinowitz, Y.S.: Keratoconus. Surv. Ophthalmol. 42, 297–319 (1998)

    Article  Google Scholar 

  2. Piñero, D.P., Alió, J.L., Barraquer, R.I., Michael, R., Jimenez, R.: Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest. Ophthalmol. Vis. Sci. 51, 1948–1955 (2010). https://doi.org/10.1167/iovs.09-4177

    Article  Google Scholar 

  3. Egorova, G.B., Rogova, A.: Keratoconus. diagnostic and monitoring methods. Vestn. oftalmol. 129, 61–66 (2013)

    Google Scholar 

  4. Krachmer, J.H., Feder, R.S., Belin, M.W.: Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 28, 293–322 (1984)

    Article  Google Scholar 

  5. Kennedy, R.H., Bourne, W.M., Dyer, J.A.: A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 101, 267–273 (1986)

    Article  Google Scholar 

  6. Belin, M.W., Duncan, J.K.: Keratoconus: the ABCD grading system. Klin. Monbl. Augenheilkd. 233(06), 701–707 (2016). https://doi.org/10.1055/s-0042-100626

    Article  Google Scholar 

  7. Amsler, M.: Kératocône classique et kératocône fruste; arguments unitaires. Ophthalmologica 111, 96–101 (1946). https://doi.org/10.1159/000300309

    Article  Google Scholar 

  8. Belin, M.W., Duncan, J., Ambrósio Jr., R., Gomes, J.A.P.: A new tomographic method of staging/classifying keratoconus: the ABCD grading system. Int. J. Kerat. Ect. Cor. Dis. 4, 55–63 (2015)

    Google Scholar 

  9. Cavas-Martinez, F., De la Cruz Sanchez, E., Nieto Martinez, J., Fernandez Canavate, F.J., Fernandez-Pacheco, D.G.: Corneal topography in keratoconus: state of the art. Eye Vis. (Lond) 3, 5 (2016). https://doi.org/10.1186/s40662-016-0036-8

  10. McGhee, C.N., Kim, B.Z., Wilson, P.J.: Contemporary treatment paradigms in keratoconus. Cornea 34(Suppl 10), S16–S23 (2015). https://doi.org/10.1097/ico.0000000000000504

    Article  Google Scholar 

  11. Muftuoglu, O., Ayar, O., Hurmeric, V., Orucoglu, F., Kilic, I.: Comparison of multimetric D index with keratometric, pachymetric, and posterior elevation parameters in diagnosing subclinical keratoconus in fellow eyes of asymmetric keratoconus patients. J. Cataract Refract. Surg. 41, 557–565 (2015). https://doi.org/10.1016/j.jcrs.2014.05.052

    Article  Google Scholar 

  12. Malecaze, F., Coullet, J., Calvas, P., Fournie, P., Arne, J.L., Brodaty, C.: Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology 113, 742–746 (2006). https://doi.org/10.1016/j.ophtha.2005.11.023

    Article  Google Scholar 

  13. Ambrosio Jr., R., Dawson, D.G., Belin, M.W.: Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am. J. Ophthalmol. 158, 1358–1359 (2014). https://doi.org/10.1016/j.ajo.2014.09.016

    Article  Google Scholar 

  14. Sonmez, B., Doan, M.P., Hamilton, D.R.: Identification of scanning slit-beam topographic parameters important in distinguishing normal from keratoconic corneal morphologic features. Am. J. Ophthalmol. 143, 401–408 (2007). https://doi.org/10.1016/j.ajo.2006.11.044

    Article  Google Scholar 

  15. Parker, J.S., van Dijk, K., Melles, G.R.: Treatment options for advanced keratoconus: a review. Surv. Ophthalmol. 60, 459–480 (2015). https://doi.org/10.1016/j.survophthal.2015.02.004

    Article  Google Scholar 

  16. Wilson, L.A.B., Humphrey, L.T.: A virtual geometric morphometric approach to the quantification of long bone bilateral asymmetry and cross-sectional shape. Am. J. Phy. Anthropol. 158, 541–556 (2015). https://doi.org/10.1002/ajpa.22809

    Article  Google Scholar 

  17. Bartocci, E., Lio, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12, e1004591 (2016). https://doi.org/10.1371/journal.pcbi.1004591

    Article  Google Scholar 

  18. Cavas-Martínez, F., Fernández-Pacheco, D.G., De La Cruz-Sánchez, E., Martínez, J.N., Cañavate, F.J.F., Alio, J.L.: Virtual biomodelling of a biological structure: the human cornea. Dyna (Spain) 90, 647–651 (2015). https://doi.org/10.6036/7689

    Article  Google Scholar 

  19. Cavas-Martínez, F., Bataille, L., Fernández-Pacheco, D.G., Cañavate, F.J.F., Alió, J.L.: A new approach to keratoconus detection based on corneal morphogeometric analysis. PLoS ONE 12(9), e0184569 (2017). https://doi.org/10.1371/journal.pone.0184569

    Article  Google Scholar 

  20. Ariza-Gracia, M.A., Zurita, J.F., Piñero, D.P., Rodriguez-Matas, J.F., Calvo, B.: Coupled biomechanical response of the cornea assessed by non-contact tonometry. a simulation study. PLoS ONE 10, e0121486 (2015). https://doi.org/10.1371/journal.pone.0121486

    Article  Google Scholar 

  21. Roy, A.S., Dupps Jr., W.J.: Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J. Biomech. Eng. 133, 011002 (2011). https://doi.org/10.1115/1.4002934

    Article  Google Scholar 

  22. Simonini, I., Pandolfi, A.: Customized finite element modelling of the human cornea. PLoS ONE 10, e0130426 (2015). https://doi.org/10.1371/journal.pone.0130426

    Article  Google Scholar 

  23. Li, X., Yang, H., Rabinowitz, Y.S.: Keratoconus: classification scheme based on videokeratography and clinical signs. J. Cataract Refract. Surg. 35, 1597–1603 (2009). https://doi.org/10.1016/j.jcrs.2009.03.050

    Article  Google Scholar 

  24. Ramos-Lopez, D., et al.: Screening subclinical keratoconus with placido-based corneal indices. Optom. Vis. Sci. 90, 335–343 (2013). https://doi.org/10.1097/OPX.0b013e3182843f2a

    Article  Google Scholar 

  25. Wilson, S.E., Klyce, S.D.: Quantitative descriptors of corneal topography. a clinical study. Arch. Ophthalmol. 109, 349–353 (1991)

    Article  Google Scholar 

  26. Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L.: The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 38, 404–415 (2005). https://doi.org/10.1016/j.jbi.2005.02.008

    Article  Google Scholar 

  27. Pepe, M.S.: The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford, New York (2004)

    Google Scholar 

  28. Piñero, D.P., Alió, J.L., Aleson, A., Escaf Vergara, M., Miranda, M.: Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J. Cataract Refract. Surg. 36, 814–825 (2010). https://doi.org/10.1016/j.jcrs.2009.11.012

    Article  Google Scholar 

  29. Saad, A., Gatinel, D.: Topographic and tomographic properties of forme fruste keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 51, 5546–5555 (2010). https://doi.org/10.1167/iovs.10-5369

    Article  Google Scholar 

  30. Saad, A., Lteif, Y., Azan, E., Gatinel, D.: Biomechanical properties of keratoconus suspect eyes. Invest. Ophthalmol. Vis. Sci. 51, 2912–2916 (2010). https://doi.org/10.1167/iovs.09-4304

    Article  Google Scholar 

  31. Cavas-Martínez, F., Fernández-Pacheco, D.G., Cañavate, F.J.F., Velázquez-Blázquez, J.S., Bolarín, J.M., Alió, J.L.: Study of morpho-geometric variables to improve the diagnosis in Keratoconus with mild visual limitation. Symmetry 10(8) (2018). https://doi.org/10.3390/sym10080306

    Article  Google Scholar 

  32. Cavas Martinez, F., et al.: Detección De Queratocono Temprano Mediante Modelado 3D Personalizado Y Análisis De Sus Parámetros Geométricos. Dyna Ingenieria E Industria 94(1), 175–181 (2019). https://doi.org/10.6036/8895

    Article  Google Scholar 

  33. de Rojas Silva, V.: Clasificación del queratocono. In: Albertazzi, R. (ed.) Queratocono: pautas para su diagnostico y tratamiento. Buenos Aires, Argentina: Ediciones Científicas Argentinas, pp. 33–97 (2010)

    Google Scholar 

  34. Sloan Jr., S.R., Khalifa, Y.M., Buckley, M.R.: The location- and depth-dependent mechanical response of the human cornea under shear loading. Invest. Ophthalmol. Vis. Sci. 55, 7919–7924 (2014). https://doi.org/10.1167/iovs.14-14997

    Article  Google Scholar 

  35. Fukuda, S., et al.: Comparison of three-dimensional optical coherence tomography and combining a rotating Scheimpflug camera with a Placido topography system for forme fruste keratoconus diagnosis. Br. J. Ophthalmol. 97, 1554–1559 (2013). https://doi.org/10.1136/bjophthalmol-2013-303477

    Article  Google Scholar 

  36. Gomes, J.A., et al.: Global consensus on keratoconus and ectatic diseases. Cornea 34, 359–369 (2015). https://doi.org/10.1097/ico.0000000000000408

    Article  Google Scholar 

Download references

Funding

This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS) reference number RD16/0008/0012 financed by the Carlos III Health Institute-General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cavas-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velázquez-Blázquez, J.S. et al. (2019). Detection of Subclinical Keratoconus Using Biometric Parameters. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics