Abstract
The validation of innovative methodologies for diagnosing keratoconus in its earliest stages is of major interest in ophthalmology. So far, subclinical keratoconus diagnosis has been made by combining several clinical criteria that allowed the definition of indices and decision trees, which proved to be valuable diagnostic tools. However, further improvements need to be made in order to reduce the risk of ectasia in patients who undergo corneal refractive surgery. The purpose of this work is to report a new subclinical keratoconus detection method based in the analysis of certain biometric parameters extracted from a custom 3D corneal model.
This retrospective study includes two groups: the first composed of 67 patients with healthy eyes and normal vision, and the second composed of 24 patients with subclinical keratoconus and normal vision as well. The proposed detection method generates a 3D custom corneal model using computer-aided graphic design (CAGD) tools and corneal surfaces’ data provided by a corneal tomographer. Defined bio-geometric parameters are then derived from the model, and statistically analysed to detect any minimal corneal deformation.
The metric which showed the highest area under the receiver-operator curve (ROC) was the posterior apex deviation.
This new method detected differences between healthy and sub-clinical keratoconus corneas by using abnormal corneal topography and normal spectacle corrected vision, enabling an integrated tool that facilitates an easier diagnosis and follow-up of keratoconus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Data Availability
None
References
Rabinowitz, Y.S.: Keratoconus. Surv. Ophthalmol. 42, 297–319 (1998)
Piñero, D.P., Alió, J.L., Barraquer, R.I., Michael, R., Jimenez, R.: Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest. Ophthalmol. Vis. Sci. 51, 1948–1955 (2010). https://doi.org/10.1167/iovs.09-4177
Egorova, G.B., Rogova, A.: Keratoconus. diagnostic and monitoring methods. Vestn. oftalmol. 129, 61–66 (2013)
Krachmer, J.H., Feder, R.S., Belin, M.W.: Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 28, 293–322 (1984)
Kennedy, R.H., Bourne, W.M., Dyer, J.A.: A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 101, 267–273 (1986)
Belin, M.W., Duncan, J.K.: Keratoconus: the ABCD grading system. Klin. Monbl. Augenheilkd. 233(06), 701–707 (2016). https://doi.org/10.1055/s-0042-100626
Amsler, M.: Kératocône classique et kératocône fruste; arguments unitaires. Ophthalmologica 111, 96–101 (1946). https://doi.org/10.1159/000300309
Belin, M.W., Duncan, J., Ambrósio Jr., R., Gomes, J.A.P.: A new tomographic method of staging/classifying keratoconus: the ABCD grading system. Int. J. Kerat. Ect. Cor. Dis. 4, 55–63 (2015)
Cavas-Martinez, F., De la Cruz Sanchez, E., Nieto Martinez, J., Fernandez Canavate, F.J., Fernandez-Pacheco, D.G.: Corneal topography in keratoconus: state of the art. Eye Vis. (Lond) 3, 5 (2016). https://doi.org/10.1186/s40662-016-0036-8
McGhee, C.N., Kim, B.Z., Wilson, P.J.: Contemporary treatment paradigms in keratoconus. Cornea 34(Suppl 10), S16–S23 (2015). https://doi.org/10.1097/ico.0000000000000504
Muftuoglu, O., Ayar, O., Hurmeric, V., Orucoglu, F., Kilic, I.: Comparison of multimetric D index with keratometric, pachymetric, and posterior elevation parameters in diagnosing subclinical keratoconus in fellow eyes of asymmetric keratoconus patients. J. Cataract Refract. Surg. 41, 557–565 (2015). https://doi.org/10.1016/j.jcrs.2014.05.052
Malecaze, F., Coullet, J., Calvas, P., Fournie, P., Arne, J.L., Brodaty, C.: Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology 113, 742–746 (2006). https://doi.org/10.1016/j.ophtha.2005.11.023
Ambrosio Jr., R., Dawson, D.G., Belin, M.W.: Association between the percent tissue altered and post-laser in situ keratomileusis ectasia in eyes with normal preoperative topography. Am. J. Ophthalmol. 158, 1358–1359 (2014). https://doi.org/10.1016/j.ajo.2014.09.016
Sonmez, B., Doan, M.P., Hamilton, D.R.: Identification of scanning slit-beam topographic parameters important in distinguishing normal from keratoconic corneal morphologic features. Am. J. Ophthalmol. 143, 401–408 (2007). https://doi.org/10.1016/j.ajo.2006.11.044
Parker, J.S., van Dijk, K., Melles, G.R.: Treatment options for advanced keratoconus: a review. Surv. Ophthalmol. 60, 459–480 (2015). https://doi.org/10.1016/j.survophthal.2015.02.004
Wilson, L.A.B., Humphrey, L.T.: A virtual geometric morphometric approach to the quantification of long bone bilateral asymmetry and cross-sectional shape. Am. J. Phy. Anthropol. 158, 541–556 (2015). https://doi.org/10.1002/ajpa.22809
Bartocci, E., Lio, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12, e1004591 (2016). https://doi.org/10.1371/journal.pcbi.1004591
Cavas-Martínez, F., Fernández-Pacheco, D.G., De La Cruz-Sánchez, E., Martínez, J.N., Cañavate, F.J.F., Alio, J.L.: Virtual biomodelling of a biological structure: the human cornea. Dyna (Spain) 90, 647–651 (2015). https://doi.org/10.6036/7689
Cavas-Martínez, F., Bataille, L., Fernández-Pacheco, D.G., Cañavate, F.J.F., Alió, J.L.: A new approach to keratoconus detection based on corneal morphogeometric analysis. PLoS ONE 12(9), e0184569 (2017). https://doi.org/10.1371/journal.pone.0184569
Ariza-Gracia, M.A., Zurita, J.F., Piñero, D.P., Rodriguez-Matas, J.F., Calvo, B.: Coupled biomechanical response of the cornea assessed by non-contact tonometry. a simulation study. PLoS ONE 10, e0121486 (2015). https://doi.org/10.1371/journal.pone.0121486
Roy, A.S., Dupps Jr., W.J.: Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J. Biomech. Eng. 133, 011002 (2011). https://doi.org/10.1115/1.4002934
Simonini, I., Pandolfi, A.: Customized finite element modelling of the human cornea. PLoS ONE 10, e0130426 (2015). https://doi.org/10.1371/journal.pone.0130426
Li, X., Yang, H., Rabinowitz, Y.S.: Keratoconus: classification scheme based on videokeratography and clinical signs. J. Cataract Refract. Surg. 35, 1597–1603 (2009). https://doi.org/10.1016/j.jcrs.2009.03.050
Ramos-Lopez, D., et al.: Screening subclinical keratoconus with placido-based corneal indices. Optom. Vis. Sci. 90, 335–343 (2013). https://doi.org/10.1097/OPX.0b013e3182843f2a
Wilson, S.E., Klyce, S.D.: Quantitative descriptors of corneal topography. a clinical study. Arch. Ophthalmol. 109, 349–353 (1991)
Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L.: The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 38, 404–415 (2005). https://doi.org/10.1016/j.jbi.2005.02.008
Pepe, M.S.: The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford, New York (2004)
Piñero, D.P., Alió, J.L., Aleson, A., Escaf Vergara, M., Miranda, M.: Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J. Cataract Refract. Surg. 36, 814–825 (2010). https://doi.org/10.1016/j.jcrs.2009.11.012
Saad, A., Gatinel, D.: Topographic and tomographic properties of forme fruste keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 51, 5546–5555 (2010). https://doi.org/10.1167/iovs.10-5369
Saad, A., Lteif, Y., Azan, E., Gatinel, D.: Biomechanical properties of keratoconus suspect eyes. Invest. Ophthalmol. Vis. Sci. 51, 2912–2916 (2010). https://doi.org/10.1167/iovs.09-4304
Cavas-Martínez, F., Fernández-Pacheco, D.G., Cañavate, F.J.F., Velázquez-Blázquez, J.S., Bolarín, J.M., Alió, J.L.: Study of morpho-geometric variables to improve the diagnosis in Keratoconus with mild visual limitation. Symmetry 10(8) (2018). https://doi.org/10.3390/sym10080306
Cavas Martinez, F., et al.: Detección De Queratocono Temprano Mediante Modelado 3D Personalizado Y Análisis De Sus Parámetros Geométricos. Dyna Ingenieria E Industria 94(1), 175–181 (2019). https://doi.org/10.6036/8895
de Rojas Silva, V.: Clasificación del queratocono. In: Albertazzi, R. (ed.) Queratocono: pautas para su diagnostico y tratamiento. Buenos Aires, Argentina: Ediciones Científicas Argentinas, pp. 33–97 (2010)
Sloan Jr., S.R., Khalifa, Y.M., Buckley, M.R.: The location- and depth-dependent mechanical response of the human cornea under shear loading. Invest. Ophthalmol. Vis. Sci. 55, 7919–7924 (2014). https://doi.org/10.1167/iovs.14-14997
Fukuda, S., et al.: Comparison of three-dimensional optical coherence tomography and combining a rotating Scheimpflug camera with a Placido topography system for forme fruste keratoconus diagnosis. Br. J. Ophthalmol. 97, 1554–1559 (2013). https://doi.org/10.1136/bjophthalmol-2013-303477
Gomes, J.A., et al.: Global consensus on keratoconus and ectatic diseases. Cornea 34, 359–369 (2015). https://doi.org/10.1097/ico.0000000000000408
Funding
This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS) reference number RD16/0008/0012 financed by the Carlos III Health Institute-General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Velázquez-Blázquez, J.S. et al. (2019). Detection of Subclinical Keratoconus Using Biometric Parameters. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-17935-9_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17934-2
Online ISBN: 978-3-030-17935-9
eBook Packages: Computer ScienceComputer Science (R0)