[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introducing Weighted Intermediate Recombination in On-Line Collective Robotics, the (\(\mu /\mu _{\mathrm {W}},1\))-On-line EEA

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11454))

  • 1064 Accesses

Abstract

Weighted intermediate recombination has been proven very useful in evolution strategies. We propose here to use it in the case of on-line embodied evolutionary algorithms. With this recombination scheme, solutions at the local populations are recombined using a weighted average that favors fitter solutions to produce a new solution. We describe the newly proposed algorithm which we dubbed (\(\mu /\mu _{\mathrm {W}},1\))-On-line EEA, and assess it performance on two swarm robotics benchmarks while comparing the results to other existing algorithms. The experiments show that the recombination scheme is very beneficial on these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The authors use a virtual energy level in place of fitness.

  2. 2.

    The term “same” is here used in the sense “originating from the same agent”.

References

  1. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics: a review. Frontiers Robot. AI 5, 12 (2018)

    Article  Google Scholar 

  2. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39, 1–18 (2002)

    Article  Google Scholar 

  3. Beyer, H.G.: Toward a theory of evolution strategies: on the benefits of sex - the \((\mu /\mu,\lambda )\) theory. Evol. Comput. 3(1), 81–111 (1995)

    Article  Google Scholar 

  4. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Springer, New York (2002). https://doi.org/10.1007/978-1-4615-1105-2

    Book  MATH  Google Scholar 

  5. Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line, on-board evolutionary robotics. In: Proceedings of GECCO 2011, pp. 171–178. ACM (2011)

    Google Scholar 

  6. Schaffer, D.J., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Proceedings of COGANN 1992, pp. 1–37 (1992)

    Google Scholar 

  7. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  8. Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odNEAT: an algorithm for distributed online, onboard evolution of robot behaviours. In: Artificial Life. vol. 13, pp. 251–258. MIT Press (2012)

    Google Scholar 

  9. Fernández Pèrez, I.n., Boumaza, A., Charpillet, F.: Decentralized innovation marking for neural controllers in embodied evolution. In: Proceedings of GECCO 2015, pp. 161–168. ACM, Madrid (2015)

    Google Scholar 

  10. Bredeche, N., Montanier, J.-M.: Environment-driven embodied evolution in a population of autonomous agents. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 290–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_30

    Chapter  Google Scholar 

  11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  12. Bredeche, N., Montanier, J.M., Weel, B., Haasdijk, E.: Roborobo! A fast robot simulator for swarm and collective robotics. CoRR abs/1304.2888 (2013)

    Google Scholar 

  13. Fernández Pèrez, I.n., Boumaza, A., Charpillet, F.: Comparison of selection methods in on-line distributed evolutionary robotics. In: Proceedings of ALIFE 2014, pp. 282–289. MIT Press, New York (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Boumaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boumaza, A. (2019). Introducing Weighted Intermediate Recombination in On-Line Collective Robotics, the (\(\mu /\mu _{\mathrm {W}},1\))-On-line EEA. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics