[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trophallaxis, Low-Power Vision Sensors and Multi-objective Heuristics for 3D Scene Reconstruction Using Swarm Robotics

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

A profitable strand of literature has lately capitalized on the exploitation of the collaborative capabilities of robotic swarms for efficiently undertaking diverse tasks without any human intervention, ranging from the blind exploration of devastated areas after massive disasters to mechanical repairs of industrial machinery in hostile environments, among others. However, most contributions reported to date deal only with robotic missions driven by a single task-related metric to be optimized by the robotic swarm, even though other objectives such as energy consumption may conflict with the imposed goal. In this paper four multi-objective heuristic solvers, namely NSGA-II, NSGA-III, MOEA/D and SMPSO, are used to command and route a set of robots towards efficiently reconstructing a scene using simple camera sensors and stereo vision in two phases: explore the area and then achieve validated map points. The need for resorting to multi-objective heuristics stems, from the consideration of energy efficiency as a second target of the mission plan. In this regard, by incorporating energy trophallaxis within the swarm, overall autonomy is increased. An environment is arranged in V-REP to shed light on the performance over a realistically emulated physical environment. SMPSO shows better exploration capabilities during the first phase of the mission. However, in the second phase the performance of SMPSO degrades in contrast to NSGA-II and NSGA-III. Moreover, the entire robotic swarm is able to return to the original departure position in all the simulations. The obtained results stimulate further research lines aimed at considering decentralized heuristics for the considered problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Future research paths in this regard will be sketched in Sect. 7.

References

  1. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_1

    Chapter  Google Scholar 

  2. Tan, Y., Zheng, Z.: Research advance in swarm robotics. Defence Technol. 9(1), 18–39 (2013)

    Article  Google Scholar 

  3. Ben-Ari, M., Mondada, F.: Swarm robotics. In: Elements of Robotics, pp. 251–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62533-1_15

  4. Wong, C., Yang, E., Yan, X.T., Gu, D.: Autonomous robots for harsh environments: a holistic overview of current solutions and ongoing challenges. Syst. Sci. Control Eng. 6(1), 213–219 (2018)

    Article  Google Scholar 

  5. Wong, C., Yang, E., Yan, X.T., Gu, D.: An overview of robotics and autonomous systems for harsh environments. In: International Conference on Automation and Computing, pp. 1–6 (2017)

    Google Scholar 

  6. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31(3), 345–359 (2013)

    Article  Google Scholar 

  7. Korst, P., Velthuis, H.: The nature of trophallaxis in honeybees. Insectes Soc. 29(2), 209–221 (1982)

    Article  Google Scholar 

  8. Hamilton, C., Lejeune, B.T., Rosengaus, R.B.: Trophallaxis and prophylaxis: social immunity in the carpenter ant camponotus pennsylvanicus. Biol. Lett. 7(1), 89–92 (2011)

    Article  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Nebro, A.J., Durillo, J.J., García-Nieto, J., Coello Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making, pp. 66–73 (2009)

    Google Scholar 

  11. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 8(11), 712–731 (2008)

    Google Scholar 

  12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  13. Haek, M., Ismail, A.R., Basalib, A.O.A., Makarim, N.: Exploring energy charging problem in swarm robotic systems using foraging simulation. Jurnal Teknologi 76(1), 239–244 (2015)

    Google Scholar 

  14. Schmickl, T., Crailsheim, K.: Trophallaxis among swarm-robots: a biologically inspired strategy for swarm robotics. In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 377–382 (2006)

    Google Scholar 

  15. Schmickl, T., Crailsheim, K.: Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton. Robots 25(1–2), 171–188 (2008)

    Article  Google Scholar 

  16. Melhuish, C., Kubo, M.: Collective energy distribution: maintaining the energy balance in distributed autonomous robots using trophallaxis. Distrib. Auton. Robot. Syst. 6, 275–284 (2007)

    Article  Google Scholar 

  17. Schiøler, H., Ngo, T.D.: Trophallaxis in robotic swarms-beyond energy autonomy. In: International Conference on Control, Automation, Robotics and Vision, pp. 1526–1533 (2008)

    Google Scholar 

  18. Carrillo, M., et al.: A bio-inspired approach for collaborative exploration with mobile battery recharging in swarm robotics. In: Korošec, P., Melab, N., Talbi, E.-G. (eds.) BIOMA 2018. LNCS, vol. 10835, pp. 75–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91641-5_7

    Chapter  Google Scholar 

  19. Mostaghim, S., Steup, C., Witt, F.: Energy aware particle swarm optimization as search mechanism for aerial micro-robots. In: IEEE Symposium Series on Computational Intelligence, pp. 1–7 (2016)

    Google Scholar 

  20. Ismail, A.R., Desia, R., Zuhri, M.F.R.: The initial investigation of the design and energy sharing algorithm using two-ways communication mechanism for swarm robotic systems. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 61–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13153-5_7

    Chapter  Google Scholar 

  21. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Rob. Syst. 53(3), 263 (2008)

    Article  Google Scholar 

  22. Hong, S., Li, M., Liao, M., van Beek, P.: Real-time mobile robot navigation based on stereo vision and low-cost GPS. Electron. Imaging 2017, 10–15 (2017)

    Article  Google Scholar 

  23. Sugihara, K.: Three principles in stereo vision. Adv. Robot. 1(4), 391–400 (1986)

    Article  Google Scholar 

  24. Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. Int. J. Comput. Vis. 32(1), 7–25 (1999)

    Article  Google Scholar 

  25. Mattoccia, S., De-Maeztu, L.: A fast segmentation-driven algorithm for accurate stereo correspondence. In: International Conference on 3D Imaging, pp. 1–6 (2011)

    Google Scholar 

  26. Chrysostomou, D., Gasteratos, A., Nalpantidis, L., Sirakoulis, G.C.: Multi-view 3D scene reconstruction using ant colony optimization techniques. Meas. Sci. Technol. 23(11), 114002 (2012)

    Article  Google Scholar 

  27. Rohmer, E., Singh, S.P., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326. IEEE (2013)

    Google Scholar 

  28. De Meyer, K., Slawomir, N.J., Mark, B.: Stochastic diffusion search: partial function evaluation in swarm intelligence dynamic optimisation. In: Swarm Intelligence Dynamic Optimisation, pp. 185–207. Springer, Heidelberg (2006)

    Google Scholar 

  29. Zhu, D., Tian, C., Sun, B., Luo, C.: Complete coverage path planning of autonomous underwater vehicle based on GBNN algorithm. J. Intell. Robot. Syst. 1–13 (2018). https://link.springer.com/article/10.1007/s10846-018-0787-7

  30. Horvátha, E., Pozna, C., Precup, R.E.: Robot coverage path planning based on iterative structured orientation. Acta Polytechnica Hungarica 15(2), 231–249 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Basque Government through the EMAITEK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Del Ser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carrillo, M., Sánchez-Cubillo, J., Osaba, E., Bilbao, M.N., Del Ser, J. (2019). Trophallaxis, Low-Power Vision Sensors and Multi-objective Heuristics for 3D Scene Reconstruction Using Swarm Robotics. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics