Abstract
Generative adversarial networks (GAN) became a hot topic, presenting impressive results in the field of computer vision. However, there are still open problems with the GAN model, such as the training stability and the hand-design of architectures. Neuroevolution is a technique that can be used to provide the automatic design of network architectures even in large search spaces as in deep neural networks. Therefore, this project proposes COEGAN, a model that combines neuroevolution and coevolution in the coordination of the GAN training algorithm. The proposal uses the adversarial characteristic between the generator and discriminator components to design an algorithm using coevolution techniques. Our proposal was evaluated in the MNIST dataset. The results suggest the improvement of the training stability and the automatic discovery of efficient network architectures for GANs. Our model also partially solves the mode collapse problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANS. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANS. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)
Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63–100 (2004)
Miikkulainen, R., et al.: Evolving deep neural networks. arXiv preprint arXiv:1703.00548 (2017)
LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/
Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)
Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Evolving the topology of large scale deep neural networks. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_2
Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1–3), 228–234 (1990)
Rawal, A., Rajagopalan, P., Miikkulainen, R.: Constructing competitive and cooperative agent behavior using coevolution. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 107–114 (2010)
García-Pedrajas, N., Hervás-Martínez, C., Muñoz-Pérez, J.: Covnet: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans. Neural Netw. 14(3), 575–596 (2003)
García-Pedrajas, N., Hervás-Martínez, C., Ortiz-Boyer, D.: Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 9(3), 271–302 (2005)
Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)
Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANS created equal? a large-scale study. arXiv preprint arXiv:1711.10337 (2017)
Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. arXiv preprint arXiv:1803.00657 (2018)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANS trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6629–6640 (2017)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Ficici, S.G., Pollack, J.B.: A game-theoretic memory mechanism for coevolution. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 286–297. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_35
Monroy, G.A., Stanley, K.O., Miikkulainen, R.: Coevolution of neural networks using a layered pareto archive. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 329–336. ACM (2006)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)
Acknowledgments
This article is based upon work from COST Action CA15140: ImAppNIO, supported by COST (European Cooperation in Science and Technology): www.cost.eu.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Costa, V., Lourenço, N., Machado, P. (2019). Coevolution of Generative Adversarial Networks. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-16692-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16691-5
Online ISBN: 978-3-030-16692-2
eBook Packages: Computer ScienceComputer Science (R0)