[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Supporting Medical Decisions for Treating Rare Diseases Through Genetic Programming

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

Casa dos Marcos is the largest specialized medical and residential center for rare diseases in the Iberian Peninsula. The large number of patients and the uniqueness of their diseases demand a considerable amount of diverse and highly personalized therapies, that are nowadays largely managed manually. This paper aims at catering for the emergent need of efficient and effective artificial intelligence systems for the support of the everyday activities of centers like Casa dos Marcos. We present six predictive data models developed with a genetic programming based system which, integrated into a web-application, enabled data-driven support for the therapists in Casa dos Marcos. The presented results clearly indicate the usefulness of the system in assisting complex therapeutic procedures for children suffering from rare diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rare disease resources & FAQs. https://rarediseases.org/for-patients-and-families/information-resources/resources-faqs/

  2. Scheeren, E.M., Mascarenhas, L.P.G., Chiarello, C.R., Costin, A.C.M.S., Oliveira, L., Neves, E.B.: Description of the pediasuit protocol\(^{TM}\). Fisioterapia em movimento 25(3), 473–480 (2012)

    Article  Google Scholar 

  3. Centro de desenvolvimento e reabilitação da casa dos marcos. http://rarissimas.pt/centro-de-desenvolvimento-e-reabilitacao-da-casa-dos-marcos/

  4. Russell, D.J., Rosenbaum, P.L., Cadman, D.T., Gowland, C., Hardy, S., Jarvis, S.: The gross motor function measure: a means to evaluate the effects of physical therapy. Dev. Med. Child Neurol. 31(3), 341–352 (1989)

    Article  Google Scholar 

  5. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., Michalkiewicz, E.L.: A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artif. Intell. Med. 30(1), 27–48 (2004)

    Article  Google Scholar 

  6. Castelli, M., Vanneschi, L., Manzoni, L., Popovič, A.: Semantic genetic programming for fast and accurate data knowledge discovery. Swarm Evol. Comput. 26, 1–7 (2016)

    Article  Google Scholar 

  7. Hu, T., Oksanen, K., Zhang, W., Randell, E., Furey, A., Zhai, G.: Analyzing feature importance for metabolomics using genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 68–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_5

    Chapter  Google Scholar 

  8. Beger, R.D., et al.: For “Precision Medicine and Pharmacometabolomics Task Group”-metabolomics society initiative: metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics 12(9), 149 (2016)

    Article  Google Scholar 

  9. Castelli, M., Vanneschi, L., Popovič, A.: Parameter evaluation of geometric semantic genetic programming in pharmacokinetics. Int. J. Bio-Inspired Comput. 8(1), 42–50 (2016)

    Article  Google Scholar 

  10. Castelli, M., et al.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp. 78–89. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-0_8

    Chapter  Google Scholar 

  11. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_18

    Chapter  Google Scholar 

  12. Smith, S.L., Cagnoni, S.: Genetic and Evolutionary Computation: Medical Applications. Wiley, Chichester (2011)

    Google Scholar 

  13. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  15. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program Evolvable Mach. 15(2), 195–214 (2014)

    Article  Google Scholar 

  16. Castelli, M., Silva, S., Vanneschi, L.: A c++ framework for geometric semantic genetic programming. Genet. Program Evolvable Mach. 16(1), 73–81 (2015)

    Article  Google Scholar 

  17. Castelli, M., Manzoni, L., Gonçalves, I., Vanneschi, L., Trujillo, L., Silva, S.: An analysis of geometric semantic crossover: a computational geometry approach. In: IJCCI (ECTA), pp. 201–208 (2016)

    Google Scholar 

  18. Oliveira, L.O.V., Otero, F.E., Pappa, G.L.: A dispersion operator for geometric semantic genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 773–780. ACM (2016)

    Google Scholar 

  19. Pawlak, T.P., Krawiec, K.: Semantic geometric initialization. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 261–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_17

    Chapter  Google Scholar 

  20. Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric semantic GP based on demes evolution and despeciation. In: IEEE Congress on Evolutionary Computation (CEC), pp. 113–120. IEEE (2017)

    Google Scholar 

  21. Bakurov, I., Vanneschi, L., Castelli, M., Fontanella, F.: EDDA-V2 – an improvement of the evolutionary demes despeciation algorithm. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 185–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_15

    Chapter  Google Scholar 

  22. Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: PSO-based search rules for aerial swarms against unexplored vector fields via genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 41–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_4

    Chapter  Google Scholar 

  23. Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: Evolving PSO algorithm design in vector fields using geometric semantic GP. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, Kyoto, Japan, 15–19 July 2018, pp. 262–263 (2018)

    Google Scholar 

  24. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0375-7_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) under project DSAIPA/DS/0022/2018 (GADgET) and project PTDC/CCI-INF/29168/2017 (BINDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illya Bakurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakurov, I., Castelli, M., Vanneschi, L., Freitas, M.J. (2019). Supporting Medical Decisions for Treating Rare Diseases Through Genetic Programming. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics