[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Evolutionary Variable Neighborhood Descent for Addressing an Electric VRP Variant

  • Conference paper
  • First Online:
Variable Neighborhood Search (ICVNS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11328))

Included in the following conference series:

Abstract

Variable neighborhood searches and evolutionary techniques have shown their effectiveness when dealing with many combinatorial optimisation problems. This study proposes to combine these two techniques for addressing the routing problem using electric and modular vehicles. This is a recent problem that aims to overcome recharging battery constraints while maintaining a certain performance regarding to the fleet cost and the traveled distance. An experimental study on benchmark instances is provided to show the relevance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggoune-Mtalaa, W., Habbas, Z., Ait Ouahmed, A., Khadraoui, D.: Solving new urban freight distribution problems involving modular electric vehicles. IET Intell. Transp. Syst. 9(6), 654–661 (2015)

    Article  Google Scholar 

  2. Baniamerian, A., Bashiri, M., Zabihi, F.: A modified variable neighborhood search hybridized with genetic algorithm for vehicle routing problems with cross-docking. Electron. Notes Discret. Math. 66, 143–150 (2018). 4th International Conference on Variable Neighborhood Search

    Article  MathSciNet  Google Scholar 

  3. Bennekrouf, M., Aggoune-Mtalaa, W., Sari, Z.: A generic model for network design including remanufacturing activities. Supply Chain Forum 14(2), 4–17 (2013)

    Article  Google Scholar 

  4. Boudahri, F., Aggoune-Mtalaa, W., Bennekrouf, M., Sari, Z.: Application of a clustering based location-routing model to a real agri-food supply chain redesign. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo, G.S. (eds.) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, vol. 457, pp. 323–331. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34300-1_31

    Chapter  Google Scholar 

  5. Braÿsy, O., Gendreau, M.: Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transp. Sci. 39(1), 101–118 (2005)

    Google Scholar 

  6. Bruglieri, M., Pezzella, F., Pisacane, O., Suraci, S.: A variable neighborhood search branching for the electric vehicle routing problem with time windows. Electron. Notes Discrete Math. 47, 221–228 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bruglieri, M., Mancini, S., Pezzella, F., Pisacane, O., Suraci, S.: A three-phase matheuristic for the time-effective electric vehicle routing problem with partial recharges. Electron. Notes Discrete Math. 58, 95–102 (2017). 4th International Conference on Variable Neighborhood Search

    Article  MathSciNet  Google Scholar 

  8. Chen, B., Qu, R., Bai, R., Ishibuchi, H.: A variable neighbourhood search algorithm with compound neighbourhoods for VRPTW, pp. 25–35 (2016)

    Google Scholar 

  9. Chen, P., Huang, H., Dong, X.: Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem. Expert Syst. Appl. 37(2), 1620–1627 (2010)

    Article  Google Scholar 

  10. Dantzig, G.B., Ramser, R.H.: The truck dispatching problem. Manag. Sci. 6, 80–91 (1959)

    Article  MathSciNet  Google Scholar 

  11. De Armas, J., Melián-Batista, B., Moreno-Pérez, J.A., Brito, J.: GVNS for a real-world rich vehicle routing problem with time windows. Eng. Appl. Artif. Intell. 42, 45–56 (2015)

    Article  Google Scholar 

  12. Ferreira, H.S., Bogue, E.T., Noronha, T.F., Belhaiza, S., Prins, C.: Variable neighborhood search for vehicle routing problem with multiple time windows. Electron. Notes Discrete Math. 66, 207–214 (2018). 4th International Conference on Variable Neighborhood Search

    Article  MathSciNet  Google Scholar 

  13. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hiermann, G., Puchinger, J., Hartl, R.F.: The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Eur. J. Oper. Res. 252(3), 995–1018 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kubiak, M.: Distance measures and fitness-distance analysis for the capacitated vehicle routing problem. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. ORSIS, vol. 39, pp. 345–364. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-71921-4_18

    Chapter  Google Scholar 

  16. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)

    Article  Google Scholar 

  17. Moura, A.: A multi-objective genetic algorithm for the vehicle routing with time windows and loading problem. In: Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., Strangmeier, R. (eds.) Intelligent Decision Support, pp. 187–201. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-8349-9777-7_11

    Chapter  Google Scholar 

  18. Mtalaa, W., Aggoune, R., Schaefers, J.: CO2 emissions calculation models for green supply chain management. In: Proceedings of POMS 20th Annual Meeting (2009). http://www.pomsmeetings.org/ConfProceedings/011/FullPapers/011-0590.pdf

  19. Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl. Intell. 24, 17–30 (2006)

    Article  Google Scholar 

  20. Rezgui, D., Aggoune-Mtalaa, W., Bouziri, H.: Towards the electrification of urban freight delivery using modular vehicles. In: 10th IEEE SOLI Conference, vol. 6, pp. 154–159 (2015)

    Google Scholar 

  21. Rezgui, D., Chaouachi Siala, J., Aggoune-Mtalaa, W., Bouziri, H.: Application of a memetic algorithm to the fleet size and mix vehicle routing problem with electric modular vehicles. GECCO (Companion) 6, 301–302 (2017)

    Google Scholar 

  22. Rezgui, D., Siala, J.C., Aggoune-Mtalaa, W., Bouziri, H.: Towards smart urban freight distribution using fleets of modular electric vehicles. In: Ben Ahmed, M., Boudhir, A.A. (eds.) SCAMS 2017. LNNS, vol. 37, pp. 602–612. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74500-8_55

    Chapter  Google Scholar 

  23. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

    Article  Google Scholar 

  24. Schneider, M.: The vehicle-routing problem with time windows and driver-specific times. Eur. J. Oper. Res. 250(1), 101–119 (2016)

    Article  MathSciNet  Google Scholar 

  25. Serrano, C., Aggoune-Mtalaa, W., Sauer, N.: Dynamic models for green logistic networks design. IFAC Proc. Vol. (IFAC-PapersOnline) 46(9), 736–741 (2013)

    Article  Google Scholar 

  26. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35, 254–265 (1987)

    Article  MathSciNet  Google Scholar 

  27. Ursani, Z., Essam, D., Cornforth, D., Stocker, R.: Localized genetic algorithm for vehicle routing problem with time windows. Appl. Soft Comput. 11, 5375–5390 (2011)

    Article  Google Scholar 

  28. Van Duin, J.H., Tavasszy, L.A., Quak, H.J.: Towards electric-urban freight: first promising steps in the electric vehicle revolution. Eur. Transp. 54(9), 1–19 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhekra Rezgui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rezgui, D., Bouziri, H., Aggoune-Mtalaa, W., Siala, J.C. (2019). An Evolutionary Variable Neighborhood Descent for Addressing an Electric VRP Variant. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds) Variable Neighborhood Search. ICVNS 2018. Lecture Notes in Computer Science(), vol 11328. Springer, Cham. https://doi.org/10.1007/978-3-030-15843-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15843-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15842-2

  • Online ISBN: 978-3-030-15843-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics