Abstract
Collaboration networks are a ubiquitous way to characterize the interactions between people. In this paper, we consider the problem of inferring social relations in collaboration networks, such as the fields that researchers collaborate in, or the categories of projects that Github users work on together. Social relation inference can be formalized as a multi-label classification problem on graph edges, but many popular algorithms for semi-supervised learning on graphs only operate on the nodes of a graph. To bridge this gap, we propose a principled method which leverages the natural homophily present in collaboration networks. First, observing that the fields of collaboration for two people are usually at the intersection of their interests, we transform an edge labeling into node labels. Second, we use a label propagation algorithm to propagate node labels in the entire graph. Once the label distribution for all nodes has been obtained, we can easily infer the label distribution for all edges. Experiments on two large-scale collaboration networks demonstrate that our method outperforms the state-of-the-art methods for social relation inference by a large margin, in addition to running several orders of magnitude faster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in neural information processing systems, pp. 2787–2795 (2013)
Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)
Powell, W.W., White, D.R., Koput, K.W., Owen-Smith, J.: Network dynamics and field evolution: the growth of interorganizational collaboration in the life sciences. Am. J. Sociol. 110(4), 1132–1205 (2005)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)
Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogenous networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 743–752. ACM (2012)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008)
Tang, W., Zhuang, H., Tang, J.: Learning to infer social ties in large networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 381–397. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_25
Tu, C., Zhang, Z., Liu, Z., Sun, M.: Transnet: translation-based network representation learning for social relation extraction. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), Melbourne (2017)
Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng. 20(1), 55–67 (2008)
Xiang, B., Liu, Z., Zhou, J., Li, X.: Feature propagation on graph: a new perspective to graph representation learning. arXiv preprint arXiv:1804.06111 (2018)
Xu, L., Wei, X., Cao, J., Philip, S.Y.: On exploring semantic meanings of links for embedding social networks (2018)
Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tian, Y., Chen, H., Perozzi, B., Chen, M., Sun, X., Skiena, S. (2019). Social Relation Inference via Label Propagation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-15712-8_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15711-1
Online ISBN: 978-3-030-15712-8
eBook Packages: Computer ScienceComputer Science (R0)