Abstract
This chapter presents the main aspects and implications of design optimization of electronic circuits using a general purpose single objective optimization approach based on the brainstorming process, which is referred as StormOptimus. The single objective optimization framework is utilized for sizing of four amplifiers, and one VLSI power grid circuit. During optimization, the problem specific information required for each circuit is kept to minimal, which consists of input specifications, design parameter ranges and a fitness function that represents the circuit’s desired behavior. Several experiments are performed on these circuits to demonstrate the effectiveness of the proposed approach. It is observed that a satisfactory design is achieved for each of the five circuits by using the proposed single objective optimization framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4), 635–672 (2005)
Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press (2002)
Alpaydin, G., Balkir, S., Dundar, G.: An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Trans. Evol. Comput. 7(3), 240–252 (2003)
Altay, E.V., Alatas, B.: Performance comparisons of socially inspired metaheuristic algorithms on unconstrained global optimization. In: Advances in Computer Communication and Computational Sciences, pp. 163–175. Springer (2019)
Andreani, P., Sjoland, H.: Noise optimization of an inductively degenerated cmos low noise amplifier. IEEE Trans. Circuits Syst. II: Analog. Digit. Signal Process. 48(9), 835–841 (2001)
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)
Boyd, S.P., Lee, T.H., et al.: Optimal design of a cmos op-amp via geometric programming. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20(1), 1–21 (2001)
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 120–127. IEEE (2007)
Dash, S., Baishnab, K.L., Trivedi, G.: Applying river formation dynamics to analyze vlsi power grid networks. In: 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 258–263. IEEE (2016)
Dash, S., Joshi, D., Trivedi, G.: Cmos analog circuit optimization via river formation dynamics. In: 2016 26th International Conference Radioelektronika (Radioelektronika), pp. 51–55. IEEE (2016)
De Amorim, R.C., Mirkin, B.: Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering. Pattern Recognit. 45(3), 1061–1075 (2012)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Duan, H., Li, S., Shi, Y.: Predator-prey brain storm optimization for dc brushless motor. IEEE Trans. Magn. 49(10), 5336–5340 (2013)
Harjani, R., Rutenbar, R.A., Carley, L.R.: Oasys: a framework for analog circuit synthesis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(12), 1247–1266 (1989)
Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)
Lampinen, J.: A constraint handling approach for the differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002, CEC’02, vol. 2, pp. 1468–1473. IEEE (2002)
Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the lévy probability distribution. IEEE Trans. Evol. Comput. 8(1), 1–13 (2004)
Liu, H., Singhee, A., Rutenbar, R.A., Carley, L.R.: Remembrance of circuits past: macromodeling by data mining in large analog design spaces. In: Proceedings of the 39th Annual Design Automation Conference, pp. 437–442. ACM (2002)
Moore, G.E.: Cramming more components onto integrated circuits, reprinted from Electronics 38(8), April 19, 1965, pp. 114 ff. IEEE Solid-State Circuits Soc. Newsl. 20(3), 33–35 (2006)
Nassif, S.: Power grid analysis benchmarks. In: Asia and South Pacific Design Automation Conference (ASPDAC 2008), pp. 376–381, March 2008
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer Science & Business Media (2006)
Qiu, H., Duan, H., Shi, Y.: A decoupling receding horizon search approach to agent routing and optical sensor tasking based on brain storm optimization. Opt.-Int. J. Light. Electron Opt. 126(7), 690–696 (2015)
Shi, Y.: Brain storm optimization algorithm. In: International Conference in Swarm Intelligence, pp. 303–309. Springer (2011)
Shi, Y.: Brain storm optimization algorithm in objective space. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1227–1234. IEEE (2015)
Shi, Y.: Unified swarm intelligence algorithms. In: Critical Developments and Applications of Swarm Intelligence, pp. 1–26. IGI Global (2018)
Slowik, A., Kwasnicka, H.: Nature inspired methods and their industry applications-swarm intelligence algorithms. IEEE Trans. Ind. Inform. 14(3), 1004–1015 (2018)
Sörensen, K., Sevaux, M., Glover, F.: A history of metaheuristics. In: Handbook of Heuristics, pp. 1–18 (2018)
Sun, C., Duan, H., Shi, Y.: Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE Comput. Intell. Mag. 8(4), 39–51 (2013)
Tan, S.X.D., Shi, C.J.R., Lee, J.C.: Reliability-constrained area optimization of vlsi power/ground networks via sequence of linear programmings. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(12), 1678–1684 (2003)
Tuba, E., Strumberger, I., Zivkovic, D., Bacanin, N., Tuba, M.: Mobile robot path planning by improved brain storm optimization algorithm. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)
Xiong, G., Shi, D.: Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects. Energy (2018)
Xiong, G., Shi, D., Zhang, J., Zhang, Y.: A binary coded brain storm optimization for fault section diagnosis of power systems. Electr. Power Syst. Res. 163, 441–451 (2018)
Yu, T., Wong, M.: Pgt solver: an efficient solver for power grid transient analysis. In: ICCAD (2012)
Zhan, Z.H., Zhang, J., Shi, Y.H., Liu, H.l.: A modified brain storm optimization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)
Zhou, D., Shi, Y., Cheng, S.: Brain storm optimization algorithm with modified step-size and individual generation. In: Advances in Swarm Intelligence, pp. 243–252 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dash, S., Joshi, D., Dey, S., Janveja, M., Trivedi, G. (2019). StormOptimus: A Single Objective Constrained Optimizer Based on Brainstorming Process for VLSI Circuits. In: Cheng, S., Shi, Y. (eds) Brain Storm Optimization Algorithms. Adaptation, Learning, and Optimization, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-15070-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-15070-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15069-3
Online ISBN: 978-3-030-15070-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)