[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Short Term Load Forecasting Using XGBoost

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2019)

Abstract

For efficient use of smart grid, exact prediction about the in-future coming load is of great importance to the utility. In this proposed scheme initially we converted daily Australian energy market operator load data to weekly data time series. Furthermore, we used eXtreme Gradient Boosting (XGBoost) for extracting features from the data. After feature selection we used XGBoost for the purpose of forecasting the electricity load for single time lag. XGBoost perform extremely well for time series prediction with efficient computing time and memmory resources usage. Our proposed scheme outperformed other schemes for mean average percentage error metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mathaba, T., Xia, X., Zhang, J.: Analysing the economic benefit of electricity price forecast in industrial load scheduling. Electr. Power Syst. Res. 116, 158–165 (2014)

    Article  Google Scholar 

  2. Sarada, K., Bapiraju, V.: Comparison of day-ahead price forecasting in energy market using Neural Network and Genetic Algorithm. In: Proceeding of the International Conference on Smart Electric Grid, pp. 1–5 (2014)

    Google Scholar 

  3. Shafie-Khah, M., Moghaddam, M.P., Sheikh-El-Eslami, M.: Price forecasting of day-ahead electricity markets using a hybrid forecast method. Energy Convers. Manag. 52(5), 2165–2169 (2011)

    Article  Google Scholar 

  4. Garcia, R.C., Contreras, J., Van Akkeren, M., Garcia, J.B.C.: A GARCH forecasting model to predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)

    Article  Google Scholar 

  5. Shahidehpour, M., Yamin, H., Li, Z.: Market overview in electric power systems. In: Market Operations in Electric Power Systems, pp. 1–20. Wiley, New York (2002)

    Google Scholar 

  6. Ci-wei, G., Bompard, E., Napoli, R., Cheng, H.: Price forecast in the competitive electricity market by support vector machine. Phys. A: Stat. Mech. Appl. 382(1), 98–113 (2007)

    Article  Google Scholar 

  7. Cai, Y., Lin, J., Wan, C., Song, Y.: A stochastic Bi-level trading model for an active distribution company with distributed generation and interruptible loads. IET Renew. Power Gener. 11(2), 278–288 (2017)

    Article  Google Scholar 

  8. Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30(4), 1030–1081 (2014)

    Article  Google Scholar 

  9. Hu, L., Taylor, G.: A novel hybrid technique for short-term electricity price forecasting in UK electricity markets. J. Int. Counc. Electr. Eng. 4(2), 114–120 (2014)

    Article  Google Scholar 

  10. Voronin, S., Partanen, J.: Forecasting electricity price and demand using a hybrid approach based on wavelet transform, ARIMA and neural networks. Int. J. Energy Res. 38(5), 626–637 (2014)

    Article  Google Scholar 

  11. Kou, P., Liang, D., Gao, L., Lou, J.: Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning. Energy Convers. Manag. 89, 298–308 (2015)

    Article  Google Scholar 

  12. Shrivastava, N.A., Panigrahi, B.K.: A hybrid wavelet-ELM based short term price forecasting for electricity markets. Int. J. Electr. Power Energy Syst. 55, 41–50 (2014)

    Article  Google Scholar 

  13. He, K., Xu, Y., Zou, Y., Tang, L.: Electricity price forecasts using a curvelet denoising based approach. Phys. A: Stat. Mech. Appl. 425, 1–9 (2015)

    Article  Google Scholar 

  14. Wan, C., Xu, Z., Wang, Y., Dong, Z.Y., Wong, K.P.: A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5(1), 463–470 (2014)

    Article  Google Scholar 

  15. Wan, C., Niu, M., Song, Y., Xu, Z.: Pareto optimal prediction intervals of electricity price. IEEE Trans. Power Syst. 32(1), 817–819 (2017)

    Article  Google Scholar 

  16. Liu, B., Nowotarski, J., Hong, T., Weron, R.: Probabilistic load forecasting via quantile regression averaging on sister forecasts. IEEE Trans. Smart Grid 8(2), 1 (2017). https://doi.org/10.1109/tsg.2015.2437877

    Article  Google Scholar 

  17. Wanga, P., Liu, B., Hongb, T.: Electric load forecasting with recency effect: a big data approach. Int. J. Forecast. 32, 585–597 (2016)

    Article  Google Scholar 

  18. Chou, J.-S., Ngo, N.-T.: Smart grid data analytics framework for increasing energy savings in residential buildings. Autom. Constr. 72, 247–257 (2016)

    Article  Google Scholar 

  19. Ludwig, N., Feuerriegel, S., Neumann, D.: Putting big data analytics to work: feature selection for forecasting electricity prices using the LASSO and random forests. ISSN 1246-0125 (Print) 2116-7052

    Google Scholar 

  20. Lago, J., De Ridder, F., De Schutter, B.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)

    Article  Google Scholar 

  21. Wang, L., Zhang, Z., Chen, J.: Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 32(4), 2673–2681 (2017)

    Article  Google Scholar 

  22. Lagoa, J., De Ridder, F., Vrancx, P., De Schutter, B.: Forecasting day-ahead electricity prices in Europe: the importance of considering market integration. Appl. Energy 211(1), 890–903 (2018)

    Article  Google Scholar 

  23. Raviv, E., Bouwman, K.E., van Dijk, D.: Forecasting day-ahead electricity prices: utilizing hourly prices. Energy Econ. 50, 227–239 (2015)

    Article  Google Scholar 

  24. Xiao, L., Jianzhou Wang, R., Hou, J.W.: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82(15), 524–549 (2015)

    Article  Google Scholar 

  25. Singh, S., Yassine, A.: Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 11, 452 (2018)

    Article  Google Scholar 

  26. Moon, J., Kim, K.-H., Kim, Y., Hwang, E.: A short-term electric load forecasting scheme using 2-stage predictive analytics. In: 2018 IEEE International Conference on Big Data and Smart Computing (2018)

    Google Scholar 

  27. González, J.P., San Roque, A.M., Perez, E.A.: Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting. IEEE Trans. Power Syst. 33(1), 545–556 (2018)

    Article  Google Scholar 

  28. Luo, J., Hong, T., Fang, S.-C.: Benchmarking robustness of load forecasting models under data integrity attacks. Int. J. Forecast. 34, 89–104 (2018)

    Article  Google Scholar 

  29. Dong, G., Chen, Z.: Data driven energy management in a home microgrid based on Bayesian optimal algorithm. IEEE Trans. Ind. Inform

    Google Scholar 

  30. Fausett, L.: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Pearson Education, Delhi (2006)

    MATH  Google Scholar 

  31. Shekhar, S., Amin, M.B.: Generalization by neural networks. IEEE Trans. Knowl. Data Eng. 4, 177–185 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbasi, R.A., Javaid, N., Ghuman, M.N.J., Khan, Z.A., Ur Rehman, S., Amanullah (2019). Short Term Load Forecasting Using XGBoost. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2019. Advances in Intelligent Systems and Computing, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-15035-8_108

Download citation

Publish with us

Policies and ethics