[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Application of Distance Measurement NLP Methods for Address and Location Matching in Logistics

  • Chapter
  • First Online:
Intelligent Information and Database Systems: Recent Developments (ACIIDS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 830))

Included in the following conference series:

  • 861 Accesses

Abstract

Paper is based on research based on linguistic terms denoting an address used for delivery services in logistic. Distance measurement NLP methods are widely usable in text mining and can be used to find the similarity among sentence or document. As part of logistics process, being able to determine correct address using machine learning we need to tackle issue of two addresses comparison (street name, city name etc.) is crucial for efficient service. This paper explains comparison techniques based on similarity score that can be calculated using distance measurement. As part of process, several distance measurements were compared while conclusion include results and recommendation on usage in address and location matching in logistics (post services).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Navarro, G.: A guided tour to approximate string matching (PDF). ACM Comput. Surv. 33(1), 31–88 (2001). CiteSeerX 10.1.1.452.6317. https://doi.org/10.1145/375360.375365

    Article  Google Scholar 

  2. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974). https://doi.org/10.1145/321796.321811 (Author, F.: Article title. Journal 2(5), 99–110 (2016))

    Article  MathSciNet  Google Scholar 

  3. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In: Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC) (2015). arXiv:1412.0348. Bibcode:2014arXiv1412.0348B

  4. Abrahamson, K.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051 (1987). https://doi.org/10.1137/0216067

    Article  MathSciNet  MATH  Google Scholar 

  5. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 819–828, 09–11 Jan 2000, San Francisco, California, USA (2000)

    Google Scholar 

  6. Andoni, A., Krauthgamer, R., Onak, K.: Polylogarithmic approximation for edit distance and the asymmetric query complexity. IEEE Symp. Foundations of Computer Science (FOCS) (2010). arXiv:1005.4033. Bibcode:2010arXiv1005.4033A. CiteSeerX 10.1.1.208.2079

  7. Levenshtein, I.: Binary codes capable of correcting deletions, insertions and reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965) also Soviet Physics Doklady 10(8) 707–710 (1966)

    Google Scholar 

  8. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, p443–p453 (1970)

    Article  Google Scholar 

  9. Anderson, R.J., Miller, G.L.: Deterministic parallel list ranking. Algorithmica 6, 859–868 (1991)

    Article  MathSciNet  Google Scholar 

  10. Cole, R., Hariharan, R.: Approximate string matching: a simpler faster algorithm. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 463–472, 25-27 Jan 1998, San Francisco, California, USA (1998)

    Google Scholar 

  11. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. Tech. Rep. SRC 1998-011, DEC Systems Research Centre (1998)

    Google Scholar 

  12. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press Inc., New York (1994)

    MATH  Google Scholar 

  13. Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 769–778, 07–09 Jan 2001, Washington, DC, USA (2001)

    Google Scholar 

  14. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking in sparse graphs. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 315–324, Jan 1987, New York, New York, USA (1987). https://doi.org/10.1145/28395.28429

  15. Gusfiel, Dan: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  16. Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 189, 12–14 Nov 2000 (2000)

    Google Scholar 

  17. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987). https://doi.org/10.1147/rd.312.0249

    Article  MathSciNet  Google Scholar 

  18. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theor. Comput. Sci. 43(2-3), 239–249 (1986)

    Article  MathSciNet  Google Scholar 

  19. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  20. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley (1983)

    Google Scholar 

  21. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching. J. Algorithms 10(2), 157–169 (1989) https://doi.org/10.1016/0196-6774(89)90010-2

    Article  MathSciNet  Google Scholar 

  22. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20, 18–31 (1980)

    Article  MathSciNet  Google Scholar 

  23. Shapira, D., Storer, J.A.: Edit distance with move operations. In: Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching, pp. 85–98, 03–05 July 2002 (2002)

    Google Scholar 

  24. Mrsic, L., Skansi, S., Kopal, R.: Preliminary study for a survey-based fuzzy membership function definition for imprecise quantification in Croatia. In: Central European Conference on Information and Intelligent Systems (2018). ISSN 1847-2001, e-ISSN 1848-2295

    Google Scholar 

  25. Mrsic, L., Kopal, R., Klepac, G.: Analyzing slavic textual sentiment using deep convolutional neural networks. In: Intelligent Decision Support Systems for Sustainable Computing: Paradigms and Applications, vol. 705, pp. 207–224 (2017). https://doi.org/10.1007/978-3-319-53153-3_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Mrsic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mrsic, L. (2020). Application of Distance Measurement NLP Methods for Address and Location Matching in Logistics. In: Huk, M., Maleszka, M., Szczerbicki, E. (eds) Intelligent Information and Database Systems: Recent Developments. ACIIDS 2019. Studies in Computational Intelligence, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-030-14132-5_11

Download citation

Publish with us

Policies and ethics