[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

Dental age estimation is important for determining the actual age of an individual. In this paper, for the purpose of improving the accuracy of dental age estimation, we present several machine learning algorithms. We apply Demirjian’s method, Willem’s method, and our methods to a dataset with 1636 cases; 787 males and 849 females. The Multi-layer Perceptron algorithm is used to predict dental age in our experiments. In order to avoid overfitting, we use Leave-one-out cross-validation when training the model. Meanwhile, we employ root-mean-square error, mean-square-error and mean-absolute-error to measure the error of the results. Through experiments, we verify that this algorithm is more accurate than traditional dental methods. In addition, we try to use a new set of features that are converted by traditional dental methods. Specifically, we find that using Demirjian’s method converted data for males and using Willem’s method converted data for females can improve the accuracy of the dental age predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams, G.: A review of the most commonly used dental age estimation techniques. J. Forensic Odontostomatol. 19(1), 9–17 (2001)

    MathSciNet  Google Scholar 

  2. Olze, A., Geserick, G., Schmeling, A.: Age estimation of unidentified corpses by measurement of root translucency. J. Forensic Odontostomatol. 22(2), 28–33 (2004)

    Google Scholar 

  3. Kvaal, S.I.: Collection of post mortem data: DVI protocols and quality assurance. Forensic Sci. Int. 159, S12–S14 (2006)

    Article  Google Scholar 

  4. Karkhanis, S., Mack, P., Franklin, D.: Dental age estimation standards for a Western Australian population. Forensic Sci. Int. 257, 509-e1 (2015)

    Article  Google Scholar 

  5. Ritz-Timme, S., Cattaneo, C., Collins, M.J., Waite, E.R., Schütz, H.W., Kaatsch, H.J., Borrman, H.I.M.: Age estimation: the state of the art in relation to the specific demands of forensic practise. Int. J. Legal Med. 113(3), 129–136 (2000)

    Article  Google Scholar 

  6. Lopez, T.T., Arruda, C.P., Rocha, M., de Oliveira Rosin, A.S.A., Michel-Crosato, E., Biazevic, M.G.H.: Estimating ages by third molars: stages of development in Brazilian young adults. J. Forensic Legal Med. 20(5), 412–418 (2013)

    Article  Google Scholar 

  7. Melo, M., Ata-Ali, J.: Accuracy of the estimation of dental age in comparison with chronological age in a Spanish sample of 2641 living subjects using the Demirjian and Nolla methods. Forensic Sci. Int. 270, 276-e1 (2017)

    Article  Google Scholar 

  8. Garn, S.M., Lewis, A.B., Kerewsky, R.S.: Genetic, nutritional, and maturational correlates of dental development. J. Dent. Res. 44(1), 228–242 (1965)

    Article  Google Scholar 

  9. Demirjian, A., Goldstein, H., Tanner, J.M.: A new system of dental age assessment. Hum. Biol. 45(2), 211–227 (1973)

    Google Scholar 

  10. Willems, G., Van Olmen, A., Spiessens, B., Carels, C.: Dental age estimation in Belgian children: Demirjian’s technique revisited. J. Forensic Sci. 46(4), 893–895 (2001)

    Article  Google Scholar 

  11. Ye, X., Jiang, F., Sheng, X., Huang, H., Shen, X.: Dental age assessment in 7–14-year-old Chinese children: Comparison of Demirjian and Willems methods. Forensic Sci. Int. 244, 36–41 (2014)

    Article  Google Scholar 

  12. Kumaresan, R., Cugati, N., Chandrasekaran, B., Karthikeyan, P.: Reliability and validity of five radiographic dental-age estimation methods in a population of Malaysian children. J. Invest. Clin. Dent. 7(1), 102–109 (2016)

    Article  Google Scholar 

  13. Djukic, K., Zelic, K., Milenkovic, P., Nedeljkovic, N., Djuric, M.: Dental age assessment validity of radiographic methods on Serbian children population. Forensic Sci. Int. 231(1–3), 398-e1 (2013)

    Google Scholar 

  14. Urzel, V., Bruzek, J.: Dental age assessment in children: a comparison of four methods in a recent French population. J. Forensic Sci. 58(5), 1341–1347 (2013)

    Article  Google Scholar 

  15. Nolla, C.M.: The development of the permanent teeth. J. Dent. Child. 27, 254–266 (1952)

    Google Scholar 

  16. Tanner, J.M.: Growth at Adolescence. Blackwell Scientific Publications, Oxford (1962)

    Google Scholar 

  17. Tao, J., Chen, M., Wang, J., Liu, L., Hassanien, A.E., Xiao, K.: Dental age estimation in East Asian population with least squares regression. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 653–660. Springer, Cham (2018)

    Google Scholar 

  18. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  19. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai, vol. 14, no. 2, pp. 1137–1145 (1995)

    Google Scholar 

  20. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  21. Rosenblatt, F.: Principles of neurodynamics: perceptrons and the theory of brain mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc., Buffalo (1961)

    Google Scholar 

  22. Rummelhart, D.E.: Learning internal representations by error propagation. In: Parallel Distributed Processing: I. Foundations, pp. 318–362 (1986)

    Google Scholar 

  23. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn, pp. 587–588. Springer, New York (2008)

    Google Scholar 

  25. Pinkus, M.L.V.L.A., Schocken, S.: Multilayer feedforward networks with non-polynomial activation functions can approximate any continuous function. Neural Netw. 6, 861–867 (1993)

    Article  Google Scholar 

  26. Govan, A.: Introduction to optimization. In North Carolina State University, SAMSI NDHS, Undergraduate workshop (2006)

    Google Scholar 

  27. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  28. Panik, M.J.: Advanced Statistics from an Elementary Point of View, vol. 9. Academic Press, Amsterdam (2005)

    MATH  Google Scholar 

  29. Lehmann, E.L., Casella, G.: Theory of Point Estimation. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  30. Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics, pp. 540–541. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  31. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The data in this paper is provided by the Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine. We also sincerely thank 1636 volunteers who have supplied the collected dental data for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tao, J. et al. (2020). Dental Age Estimation: A Machine Learning Perspective. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_71

Download citation

Publish with us

Policies and ethics