[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Texture Synthesis

  • Living reference work entry
  • First Online:
Computer Vision
  • 57 Accesses

Synonyms

Texture generation

Related Concepts

Definition

Texture synthesis is the process of producing an image of a certain texture pattern from either a model governing the variation of the texture patterns or a small number of samples of the texture pattern, as illustrated in Fig. 1. The model could be either learned from training samples or composed of a set of placing rules or procedural steps.

Fig. 1
figure 1

Given the left sample, texture synthesis is to generate a new texture image which follows the same underlying process governing the texture pattern

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Heeger DJ, Bergen JR (1995) Pyramid-based texture analysis/synthesis. In: ICIP. IEEE, p 3648

    Google Scholar 

  2. Witkin A, Kass M (1991) Reaction-diffusion textures. ACM Siggraph Comput Graph 25(4):299–308

    Article  Google Scholar 

  3. Desbenoit B, Galin E, Samir Akkouche (2004) Simulating and modeling lichen growth. In: Computer graphics forum, vol 23. Wiley Online Library, pp 341–350

    Google Scholar 

  4. Walter M, Fournier A, Reimers M (1998) Clonal mosaic model for the synthesis of mammalian coat patterns. In: Graphics interface, vol 98, pp 82–91

    Google Scholar 

  5. Zhu SC, Wu Y, Mumford D (1998) Filters, random fields and maximum entropy (frame): towards a unified theory for texture modeling. Int J Comput Vis 27(2):107–126

    Article  Google Scholar 

  6. Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2. IEEE, pp 1033–1038

    Google Scholar 

  7. Simoncelli EP, Portilla J (1998) Texture characterization via joint statistics of wavelet coefficient magnitudes. In: Proceedings of the 5th IEEE international conference on image processing, vol 1

    Google Scholar 

  8. Faugeras OD, Pratt WK (1980) Decorrelation methods of texture feature extraction. IEEE Trans Pattern Anal Mach Intell 4:323–332

    Article  Google Scholar 

  9. Efros AA, Freeman WT (2001) Image quilting for texture synthesis and transfer. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, pp 341–346

    Google Scholar 

  10. Liang L, Liu C, Xu Y-Q, Guo B, Shum H-Y (2001) Real-time texture synthesis by patch-based sampling. ACM Trans Graph (ToG) 20(3):127–150

    Article  Google Scholar 

  11. Wei L-Y, Levoy M (2000) Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 479–488. ACM Press/Addison-Wesley Publishing Co

    Google Scholar 

  12. Wu Q, Yu Y (2004) Feature matching and deformation for texture synthesis. ACM Trans Graph (ToG) 23(3):364–367

    Article  MathSciNet  Google Scholar 

  13. Julesz B (1962) Visual pattern discrimination. IRE Trans Inf Theory 8(2):84–92

    Article  Google Scholar 

  14. Wu YN, Zhu SC, Liu X (1999) Equivalence of Julesz and Gibbs texture ensembles. In: Proceedings of the seventh IEEE computer society international conference on computer vision, Kerkyra, Corfu, Greece, vol II, pp 1025–1032

    Google Scholar 

  15. Gatys LA, Ecker AS, Bethge M (2015) Texture synthesis using convolutional neural networks. In: Advances in neural information processing systems, pp 262–270

    Google Scholar 

  16. Chen D, Yuan L, Liao J, Yu N, Hua G (2017) Stylebank: An explicit representation for neural image style transfer. In: Proceedings of the 2017 IEEE computer society conference on computer vision and pattern recognition, CVPR 2017, Honolulu

    Google Scholar 

  17. Lu Y, Zhu S, Wu YN (2016) Learning frame models using cnn filters. In: Thirtieth AAAI conference on artificial intelligence

    Google Scholar 

  18. Doretto G, Chiuso A, Wu YN, Soatto S (2003) Dynamic textures. Int J Comput Vis 51(2):91–109

    Article  MATH  Google Scholar 

  19. Yuan L, Wen F, Liu C, Shum H-Y (2004) Synthesizing dynamic texture with closed-loop linear dynamic system. In: Proceedings of European conference on computer vision, Prague, Czech Republic. Springer

    Book  Google Scholar 

  20. Ryan TW, Sanders LD, Fisher HD, Iverson AE (1996) Image compression by texture modeling in the wavelet domain. IEEE Trans Image Process 5(1): 26–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hua .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, D., Yuan, L., Hua, G. (2020). Texture Synthesis. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_864-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_864-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Living Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics