Abstract
The increasingly larger quantities of information generated in the world over the last few years, has led to the emergence of the paradigm known as Big Data. The analysis of those vast quantities of data has become an important task in science and business in order to turn that information into a valuable asset. Many data analysis tasks involves the use of machine learning techniques during the model creation step and the goal of these predictive models consists on achieving the highest possible accuracy to predict new samples, and for this reason there is high interest in selecting the most suitable algorithm for a specific dataset. This trend is known as model selection and it has been widely studied in datasets of common size, but poorly explored in the Big Data context. As an effort to explore in this direction this work propose an algorithm for model selection in Big Data.
Supported by CONACyT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apacheorg: ML tuning: model selection and hyperparameter tuning, August 2016. http://spark.apache.org/docs/latest/ml-tuning.html
Bansal, B., Sahoo, A.: Full model selection using bat algorithm. In: 2015 International Conference on Cognitive Computing and Information Processing (CCIP), pp. 1–4. IEEE (2015)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
Ceruti, C., Bassis, S., Rozza, A., Lombardi, G., Casiraghi, E., Campadelli, P.: DANCo: dimensionality from angle and norm concentration. arXiv preprint arXiv:1206.3881 (2012)
Chatelain, C., Adam, S., Lecourtier, Y., Heutte, L., Paquet, T.: A multi-model selection framework for unknown and/or evolutive misclassification cost problems. Pattern Recogn. 43(3), 815–823 (2010). https://doi.org/10.1016/j.patcog.2009.07.006
Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. J. Mach. Learn. Res. 10(Feb), 405–440 (2009)
Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in the MapReduce framework. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374–383. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25591-5_39
Guller, M.: Big Data Analytics with Spark: A Practitioners Guide to Using Spark for Large Scale Data Analysis. Apress, New York (2015). http://www.apress.com/9781484209653
Guo, X., Yang, J., Wu, C., Wang, C., Liang, Y.: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16), 3211–3215 (2008)
Kaneko, H., Funatsu, K.: Fast optimization of hyperparameters for support vector regression models with highly predictive ability. Chemom. Intell. Lab. Syst. 142, 64–69 (2015). https://doi.org/10.1016/j.chemolab.2015.01.001, http://linkinghub.elsevier.com/retrieve/pii/S0169743915000039
Lessmann, S., Stahlbock, R., Crone, S.F.: Genetic algorithms for support vector machine model selection. In: 2006 International Joint Conference on Neural Networks. IJCNN 2006, pp. 3063–3069. IEEE (2006)
Lombardi, G., Rozza, A., Ceruti, C., Casiraghi, E., Campadelli, P.: Minimum neighbor distance estimators of intrinsic dimension. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 374–389. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_24
Rosales-Pérez, A.: Surrogate-assisted multi-objective model selection for support vector machines. Neurocomputing 150(2015), 163–172 (2015)
Rosales-Pérez, A., Gonzalez, J.A., Coello Coello, C.A., Escalante, H.J., Reyes-Garcia, C.A.: Multi-objective model type selection. Neurocomputing, 146, 83–94 (2014). https://doi.org/10.1016/j.neucom.2014.05.077, http://linkinghub.elsevier.com/retrieve/pii/S0925231214008789
Sánchez-Monedero, J., Gutiérrez, P.A., Pérez-Ortiz, M., Hervás-Martínez, C.: An n-spheres based synthetic data generator for supervised classification. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 613–621. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38679-4_62
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855. ACM (2013)
Tlili, M., Hamdani, T.M.: Big data clustering validity. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 348–352. IEEE (2014)
Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)
Yu, K., Ji, L., Zhang, X.: Kernel nearest-neighbor algorithm. Neural Process. Lett. 15(2), 147–156 (2002)
Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Díaz-Pacheco, A., Gonzalez-Bernal, J.A., Reyes-García, C.A., Escalante-Balderas, H.J. (2018). Full Model Selection in Big Data. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Soft Computing. MICAI 2017. Lecture Notes in Computer Science(), vol 10632. Springer, Cham. https://doi.org/10.1007/978-3-030-02837-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-02837-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02836-7
Online ISBN: 978-3-030-02837-4
eBook Packages: Computer ScienceComputer Science (R0)