[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Noninvasive Continuous Fetal Heart Rate Monitoring System for Mobile Healthcare Based on Fetal Phonocardiography

  • Conference paper
  • First Online:
Advances in Body Area Networks I

Part of the book series: Internet of Things ((ITTCC))

Abstract

Although the noninvasive continuous fetal heart rate (FHR) monitor is often recommended, the Doppler Ultrasonographic Cardiotocography (CTG) is improper for long-term monitor due to the less safety and the requirement of professional operation skill. In this paper, we design a noninvasive, continuous and real-time FHR monitoring system based on fetal phonocardiography by stationary wavelet denoising and cyclostationary process. Good agreement with CTG is obtained by Bland Altman analysis. Besides, quantitative results show that the FHR has an average accuracy of 97% compared with CTG on clinical data sets. The proposed system provides an alternative for CTG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Várady, P., Wildt, L., Benyó, Z., Hein, A.: An advanced method in fetal phonocardiography. Comput. Methods Programs Biomed. 71, 283 (2003)

    Article  Google Scholar 

  2. Martin, J.A., Hamilton, B.E., Osterman, M.J., Curtin, S.C., Matthews, T.J.: Births: final data for 2012. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. Natl. Vital Stat. Syst. 59, 3–71 (2010)

    Google Scholar 

  3. Mantini, D., Comani, S., Alleva, G., Romani, G.L.: Fetal cardiac time intervals: validation of an automatic tool for beat-to-beat detection on fetal magnetocardiograms. Int. Res. J. Pharm. 3 (2005)

    Google Scholar 

  4. Sameni, R., Clifford, G.D.: A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol. Therapy J. 3, 4 (2010)

    Google Scholar 

  5. Mittra, A.K.: System simulation and comparative analysis of foetal heart sound de-noising techniques for advanced phonocardiography. Int. J. Biomed. Eng. Technol. 1, 73–85 (2007)

    Article  Google Scholar 

  6. Adithya, P.C., Sankar, R., Moreno, W.A., Hart, S.: Trends in fetal monitoring through phonocardiography: challenges and future directions. Biomed. Signal Process. Control 33, 289–305 (2017)

    Article  Google Scholar 

  7. Talbert, D.G., Davies, W.L., Johnson, F., Abraham, N., Colley, N., Southall, D.P.: Wide bandwidth fetal phonography using a sensor matched to the compliance of the mother’s abdominal wall. IEEE Trans. Bio-med. Eng. 33, 175 (1986)

    Article  Google Scholar 

  8. Bassil, H.E., Dripps, J.H.: Real time processing and analysis of fetal phonocardiographic signals. Clinical physics and physiological measurement: an official journal of the Hospital Physicists’ Association, Deutsche Gesellschaft für Medizinische Physik and the European Federation of Organisations for Medical Physics 10(Suppl B), 67 (1989)

    Article  Google Scholar 

  9. Soysa, W.N.M., Godaliyadda, R.I., Wijayakulasooriya, J.V., Ekanayake, M.P.B., Kandauda, I.C.: An eigenfilter based approach for extraction of fetal heart signals under noisy conditions using adaptive filters. In: Fourth International Conference on Computational Intelligence, Modelling and Simulation, pp. 254–259

    Google Scholar 

  10. Martinek, R., Nedoma, J., Fajkus, M., Kahankova, R., Konecny, J., Janku, P., Kepak, S., Bilik, P., Nazeran, H.: A phonocardiographic-based fiber-optic sensor and adaptive filtering system for noninvasive continuous fetal heart rate monitoring. Sensors 17, 890 (2017)

    Article  Google Scholar 

  11. Mittra, A.K., Choudhari, N.K.: Time-frequency analysis of foetal heart sound signal for the prediction of prenatal anomalies. J. Med. Eng. Technol. 33, 296–302 (2009)

    Article  Google Scholar 

  12. Balogh, Á.T., Kovács, F.: Application of phonocardiography on preterm infants with patent ductus arteriosus ☆. Biomed. Signal Process. Control 6, 337–345 (2011)

    Article  Google Scholar 

  13. Chourasia, V.S., Mittra, A.K.: A comparative analysis of de-noising algorithms for fetal phonocardiographic signals. IETE J. Res. 55, 10–15 (2009)

    Article  Google Scholar 

  14. Chourasia, V.S., Mittra, A.K.: Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals. J. Med. Eng. Technol. 33, 442–448 (2009)

    Article  Google Scholar 

  15. Vaisman, S., Yaniv Salem, S., Holcberg, G., Geva, A.B.: Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 42, 171–179 (2012)

    Article  Google Scholar 

  16. Chourasia, V.S., Tiwari, A.K., Gangopadhyay, R.: A novel approach for phonocardiographic signals processing to make possible fetal heart rate evaluations. Digit. Signal Process. 30, 165–183 (2014)

    Article  Google Scholar 

  17. Samieinasab, M., Sameni, R.: Fetal phonocardiogram extraction using single channel blind source separation. In: Electrical Engineering, pp. 78–83

    Google Scholar 

  18. Warbhe, A.D., Dharaskar, R.V., Kalambhe, B.: A single channel phonocardiograph processing using EMD, SVD, and EFICA. In: International Conference on Emerging Trends in Engineering and Technology, pp. 578–581

    Google Scholar 

  19. Noorzadeh, S., Rivet, B., Guméry, P.Y.: A multi-modal approach using a non-parametric model to extract fetal ECG. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 832–836

    Google Scholar 

  20. Fowler, J.E.: The redundant discrete wavelet transform and additive noise. IEEE Signal Process. Lett. 12, 629–632 (2005)

    Article  Google Scholar 

  21. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. Publ. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  MathSciNet  Google Scholar 

  22. Li, T., Li, T., Qiu, T., Park, Y.: Fetal heart rate monitoring from phonocardiograph signal using repetition frequency of heart sounds. J. Electr. Comput. Eng. 2016, 3 (2016)

    Google Scholar 

  23. Gardner, W.A., Napolitano, A., Paura, L.: Cyclostationarity: half a century of research. Signal Process. 86, 639–697 (2006)

    Article  Google Scholar 

  24. Cesarelli, M., Ruffo, M., Romano, M., Bifulco, P.: Simulation of foetal phonocardiographic recordings for testing of FHR extraction algorithms. Comput. Methods Programs Biomed. 107, 513–523 (2012)

    Article  Google Scholar 

  25. Ruffo, M., Cesarelli, M., Romano, M., Bifulco, P., Fratini, A.: An algorithm for FHR estimation from foetal phonocardiographic signals. Biomed. Signal Process. Control 5, 131–141 (2010)

    Article  Google Scholar 

  26. Giavarina, D.: Understanding Bland Altman analysis. Biochemia Medica 25, 141 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Special Fund for Scientific Research Cooperation of University Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, P. et al. (2019). A Noninvasive Continuous Fetal Heart Rate Monitoring System for Mobile Healthcare Based on Fetal Phonocardiography. In: Fortino, G., Wang, Z. (eds) Advances in Body Area Networks I. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-02819-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02819-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02818-3

  • Online ISBN: 978-3-030-02819-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics