[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Binning Based Data Reduction for Vector Field Data of a Particle-In-Cell Fusion Simulation

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11203))

Included in the following conference series:

Abstract

With this work, we explore the feasibility of using in situ data binning techniques to achieve significant data reductions for particle data, and study the associated errors for several post-hoc analysis techniques. We perform an application study in collaboration with fusion simulation scientists on data sets up to 489 GB per time step. We consider multiple ways to carry out the binning, and determine which techniques work the best for this simulation. With the best techniques we demonstrate reduction factors as large as 109x with low error percentage.

The U.S. government retains certain licensing rights. This is a U.S. government work and certain licensing rights apply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahern, S., et al.: Scientific discovery at the exascale. In: Report from the DOE ASCR 2011 Workshop on Exascale Data Management (2011)

    Google Scholar 

  2. Bauer, A.C., et al.: In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms, a State-of-the-art (STAR) Report. In: Computer Graphics Forum, Proceedings of Eurovis 2016, vol. 35, no. 3, June 2016. lBNL-1005709

    Google Scholar 

  3. Chang, C., et al.: Compressed ion temperature gradient turbulence in diverted tokamak edge. Phys. Plasmas (1994-Present) 16(5), 056108 (2009)

    Article  Google Scholar 

  4. Childs, H., et al.: Extreme scaling of production visualization software on diverse architectures. IEEE Comput. Graph. Appl. 30(3), 22–31 (2010)

    Article  Google Scholar 

  5. Childs, H., et al.: Visualization at extreme scale concurrency. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High Performance Visualization: Enabling Extreme-Scale Scientific Insight. CRC Press, Boca Raton (2012)

    Google Scholar 

  6. Fabian, N., et al.: The paraview coprocessing library: a scalable, general purpose in situ visualization library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 89–96. IEEE (2011)

    Google Scholar 

  7. Kress, J., Churchill, R.M., Klasky, S., Kim, M., Childs, H., Pugmire, D.: Preparing for in situ processing on upcoming leading-edge supercomputers. Supercomput. Front. Innov. 3(4), 49–65 (2016)

    Google Scholar 

  8. Kress, J., Pugmire, D., Klasky, S., Childs, H.: Visualization and analysis requirements for in situ processing for a large-scale fusion simulation code. In: Proceedings of the 2nd Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization, pp. 45–50. IEEE Press (2016)

    Google Scholar 

  9. Liu, Q., et al.: Hello adios: the challenges and lessons of developing leadership class i/o frameworks. Concurr. Comput.: Pract. Exp. 26(7), 1453–1473 (2014). https://doi.org/10.1002/cpe.3125

    Article  Google Scholar 

  10. Lo, L., Sewell, C., Ahrens, J.P.: Piston: a portable cross-platform framework for data-parallel visualization operators. In: EGPGV, pp. 11–20 (2012)

    Google Scholar 

  11. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible io and integration for scientific codes through the adaptable io system (adios). In: Proceedings of the 6th International Workshop on Challenges of Large Applications in Distributed Environments, CLADE 2008, pp. 15–24. ACM, New York (2008). https://doi.org/10.1145/1383529.1383533

  12. Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: the extreme-scale analysis and visualization library. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 21–30. The Eurographics Association (2012)

    Google Scholar 

  13. Moreland, K., Ayachit, U., Geveci, B., Ma, K.L.: Dax toolkit: a proposed framework for data analysis and visualization at extreme scale. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 97–104, October 2011

    Google Scholar 

  14. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. (CG&A) 36(3), 48–58 (2016)

    Article  Google Scholar 

  15. Neuroth, T., Sauer, F., Wang, W., Ethier, S., Ma, K.L.: Scalable visualization of discrete velocity decompositions using spatially organized histograms. In: 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), pp. 65–72. IEEE (2015)

    Google Scholar 

  16. Oldfield, R.A., Widener, P., Maccabe, A.B., Ward, L., Kordenbrock, T.: Effcient data-movement for lightweight i/o. In: 2006 IEEE International Conference on Cluster Computing, pp. 1–9, September 2006. https://doi.org/10.1109/CLUSTR.2006.311897

  17. Pugmire, D., Kress, J., Meredith, J., Podhorszki, N., Choi, J., Klasky, S.: Towards scalable visualization plugins for data staging workows. In: Big Data Analytics: Challenges and Opportunities (BDAC 2014) Workshop at Supercomputing Conference, November 2014

    Google Scholar 

  18. Reach, C., North, C.: Bandlimited olap cubes for interactive big data visualization. In: 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), pp. 107–114. IEEE (2015)

    Google Scholar 

  19. Schatz, K., Müller, C., Krone, M., Schneider, J., Reina, G., Ertl, T.: Interactive visual exploration of a trillion particles. In: 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), pp. 56–64. IEEE (2016)

    Google Scholar 

  20. Tchoua, R., et al.: Adios visualization schema: a first step towards improving interdisciplinary collaboration in high performance computing. In: 2013 IEEE 9th International Conference on eScience (eScience), pp. 27–34. IEEE (2013)

    Google Scholar 

  21. Vishwanath, V., Hereld, M., Papka, M.: Toward simulation-time data analysis and i/o acceleration on leadership-class systems. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 9–14 (2011). https://doi.org/10.1109/LDAV.2011.6092178

  22. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Proceedings of the 11th Eurographics conference on Parallel Graphics and Visualization, pp. 101–109. Eurographics Association (2011)

    Google Scholar 

  23. Ye, Y.C., et al.: In situ generated probability distribution functions for interactive post hoc visualization and analysis. In: 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV), pp. 65–74. IEEE (2016)

    Google Scholar 

Download references

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Kress .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kress, J., Choi, J., Klasky, S., Churchill, M., Childs, H., Pugmire, D. (2018). Binning Based Data Reduction for Vector Field Data of a Particle-In-Cell Fusion Simulation. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds) High Performance Computing. ISC High Performance 2018. Lecture Notes in Computer Science(), vol 11203. Springer, Cham. https://doi.org/10.1007/978-3-030-02465-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02465-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02464-2

  • Online ISBN: 978-3-030-02465-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics