[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Remaining Useful Life as Prognostic Approach: A Review

  • Conference paper
  • First Online:
Human Systems Engineering and Design (IHSED 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 876))

Abstract

Prognostics is the process of predicting a lifetime point when a system or its component is not able to complete its proposed function. The time from the current time to the time of a failure is recognized as Remaining Useful Life (RUL). Such predictions are typically done with the application of model-based, data-driven, and hybrid-based approaches, to manage product support systems, structures, and infrastructures more safely and efficiently. In this paper the attention is exactly paid to their classifications and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonissone, P.P., Xue, F., Subbu, R.: Fast meta-models for local fusion of multiple predictive models. Appl. Soft Comput. J. 11(2), 1529–1539 (2011)

    Article  Google Scholar 

  2. Lasheras, F.S., Nieto, P.J.G., de Cos Juez, F.J., Bayón, R.M., Suárez, V.M.G.: A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines. Sensors 15(3), 7062–7083 (2015)

    Article  Google Scholar 

  3. Yang, W.A., Xiao, M., Zhou, W., Guo, Y., Liao, W.: A hybrid prognostic approach for remaining useful life prediction of lithium-ion batteries. Shock Vibr., 15 (2016)

    Google Scholar 

  4. Zaidan, M.A., Mills, A.R., Harrison, R.F., Fleming, P.J.: Gas turbine engine prognostics using Bayesian hierarchical models: a variational approach. Mech. Syst. Signal Process. 70, 120–140 (2016)

    Article  Google Scholar 

  5. Si, X.S., Zhang, Z.X., Hu, C.H.: Adaptive prognostic approach via nonlinear degradation modeling. In: Si, X.S., Zhang, Z.X., Hu, C.H. (eds.) Data-Driven Remaining Useful Life Prognosis Techniques, pp. 247–271. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  6. Bastard, G.: Some diagnostic and prognostic methods for components supporting electrical energy management in a military vehicle. In: 2nd European Conference of the Prognostics and Health Management Society, PHME 2014, pp. 821–824 (2014)

    Google Scholar 

  7. Dragomir, O.E., Gouriveau, R., Dragomir, F., Minca, E., Zerhouni, N.: Review of prognostic problem in condition-based maintenance. In: European Control Conference, ECC 2009, Budapest, Hungary, pp. 1585–1592 (2009)

    Google Scholar 

  8. ISO 13381-1, Condition monitoring and diagnostics of machines - prognostics – Part 1: General guidelines. Int. Standard, ISO (2015)

    Google Scholar 

  9. Tobon-Mejia, D.A., Medjaher, K., Zerhouni, N.: The ISO 13381-1 standard’s failure prognostics process through an example. In: IEEE - Prognostics & System Health Management Conference, University of Macau, Macau, China (2010)

    Google Scholar 

  10. Lin, D., Makis, V.: Recursive filters for a partially observable system subject to random failure. Adv. Appl. Probab. 35, 207–227 (2003)

    Article  MathSciNet  Google Scholar 

  11. Okoh, C., Roy, R., Mehnen, J., Redding, L.: Overview of remaining useful life prediction techniques in through-life engineering services. In: Proceedings of the 6th CIRP Conference on Industrial Product-Service Systems. Procedia CIRP, vol. 16, pp. 158–163 (2014)

    Article  Google Scholar 

  12. Xiongzi, C., Jinsong, Y., Diyin, T., Yingxun, W.: Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: 10th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), vol. 2, p. 94 (2011)

    Google Scholar 

  13. Sikorska, J.Z., Hodkiewicz, M., Ma, L.: Prognostic modeling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25(5), 1803–1836 (2011)

    Article  Google Scholar 

  14. Jardine, A., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)

    Article  Google Scholar 

  15. Kothamasu, R., Huang, S.H., VerDuin, W.H.: System health monitoring and prognostics-a review of current paradigms and practices. Int. J. Adv. Manuf. Technol. 28(9–10), 1012–1024 (2006)

    Article  Google Scholar 

  16. Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., Liao, H.: Intelligent prognostics tools and e-maintenance. Comput. Ind. 57(6), 476–489 (2006)

    Article  Google Scholar 

  17. Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., Wu, B.: Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Wiley, New York (2006)

    Book  Google Scholar 

  18. Pecht, M.G.: Prognostics and health management of electronics. In: Prognostics and Health Management of Electronics, pp. 1–315 (2008)

    Google Scholar 

  19. Heng, A., Zhang, S., Tan, A.C.C., Mathew, J.: Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009)

    Article  Google Scholar 

  20. Medjaher, K., Tobon-Mejia, D., Zerhouni, N.: Remaining useful life estimation of critical components with application to bearings. IEEE Trans. Reliab. Instit. Electr. Electron. Eng. 61(2), 292–302 (2012)

    Google Scholar 

  21. Bechhoefer, E.: Data Driven prognostics for rotating machinery. In: Kadry, S. (ed.) Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, pp. 120–134. IGI-Global (2013)

    Google Scholar 

  22. Zio, E.: Prognostics and health management of industrial equipment. In: Kadry, S. (ed.) Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, pp. 333–356. IGI Global (2012)

    Google Scholar 

  23. Gouriveau, R., Medjaher, K., Zerhouni, N.: Mechanical engineering and solid mechanics series: reliability of multiphysical systems set. From Prognostics and Health Systems Management to Predictive Maintenance 1. Monitoring and Prognositics, p. 4. Wiley (2017)

    Google Scholar 

  24. Luo, M., Wang, D., Pham, M., Low, C.B., Zhang, J.B., Zhang, D.H., Zhao, Y.Z.: Model-based fault diagnosis/prognosis for wheeled mobile robots: a review. In: 31st Annual Conference of IEEE Industrial Electronics Society, IECON 2005, pp. 2267–2273 (2005)

    Google Scholar 

  25. Mrugalska, B.: A bounded-error approach to actuator fault diagnosis and remaining useful life prognosis of takagi-sugeno fuzzy systems. ISA Trans. 80, 257–266 (2018)

    Article  Google Scholar 

  26. Liao, L., Köttig, F.: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 63(1), 191–207 (2014)

    Article  Google Scholar 

  27. Medjaher, K., Tobon-Mejia, D.A., Zerhouni, N.: Remaining useful life estimation of critical components with application to bearings. IEEE J. Trans. Reliab. 61(2), 292–302 (2012)

    Article  Google Scholar 

  28. Xue, F., Bonissone, P., Varma, A., et al.: An instance-based method for remaining useful life estimation for aircraft engines. J. Fail. Anal. Preven. 8, 199–206 (2008)

    Article  Google Scholar 

  29. Tran, V.T., Pham, H.T., Yang, B.S., Nguyen, T.T.: Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and SVM. In: Mathew, J., et al. (eds.) Engineering Asset Management and Infrastructure Sustainability, pp. 959–970. Springer, London (2011)

    Google Scholar 

  30. Wang, M., Wang, J.: CHMM for tool condition monitoring and remaining useful life prediction. Int. J. Adv. Manuf. Technol. 59, 463–471 (2012)

    Article  Google Scholar 

  31. Lim, R., Mba, D.: Fault detection and remaining useful life estimation using switching Kalman filters. In: Tse, P.W., et al. (eds.) Engineering Asset Management - Systems, Professional Practices and Certification. Proceedings of the 8th World Congress on Engineering Asset Management (WCEAM 2013) & the 3rd International Conference on Utility Management & Safety (ICUMAS). Lecture Notes in Mechanical Engineering, pp. 53–64. Springer, Cham (2015)

    Google Scholar 

  32. Raghavan, N., Frey, D.D.: Particle filter approach to lifetime prediction for microelectronic devices and systems with multiple failure mechanisms. Microelectron. Reliab. 55(9–10), 1297–1301 (2015)

    Article  Google Scholar 

  33. Si, X.S.: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data. IEEE Trans. Ind. Electron. 62(8), 5082–5096 (2015)

    Article  Google Scholar 

  34. Wang, Y., Peng, Y., Zi, Y., Jin, X., Tsui, K.L.: A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Trans. Ind. Inf. 12(3), 924–932 (2016)

    Article  Google Scholar 

  35. Saadat, B., Kouzou, A., Guemana, M., Hafaifa, A.: Availability phase estimation in gas turbine based on prognostic system modeling. Diagnostyka 18(2), 3–11 (2017)

    Google Scholar 

  36. Peng, Y., Cheng, J., Liu, Y., Li, X., Peng, Z.: An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings. front. Mech. Eng. 13(2), 301–310 (2018)

    Google Scholar 

  37. Valeti, B., Pakzad, S.N.: Estimation of remaining useful life of a fatigue damaged wind turbine blade with particle filters. In: Pakzad, S. (eds.) Dynamics of Civil Structures. Conference Proceedings of the Society for Experimental Mechanics Series, vol. 2, pp. 319–328. Springer, Cham (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Mrugalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mrugalska, B. (2019). Remaining Useful Life as Prognostic Approach: A Review. In: Ahram, T., Karwowski, W., Taiar, R. (eds) Human Systems Engineering and Design. IHSED 2018. Advances in Intelligent Systems and Computing, vol 876. Springer, Cham. https://doi.org/10.1007/978-3-030-02053-8_105

Download citation

Publish with us

Policies and ethics