Abstract
In the ongoing digitalization of society new technical systems and technologies are increasingly penetrating people’s everyday lives. In order to be able to analyze the resulting complex interactions and forms of networking, a participative approach is needed to identify the needs of these user groups. Empirical studies, e.g., mass studies, are important because it may be required that many stakeholders have to be questioned in a short period. In this article, various methodological approaches are presented using best practice examples to show the strengths and weaknesses of these methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bech, M., & Kristensen, M. (2009). Differential response rates in postal and Web-based surveys in older respondents. Survey Research Methods, 3(1), 1–6.
Best, S. J., & Krueger, B. J. (2004). Internet data collection, Quantitative applications in the social sciences (141st ed.). Thousand Oaks, California: Sage Publications.
Bröhl, C., Mertens, A., Brandl, C., Mayer, M., & Schlick, C. (2013). Integration technischer Assistenzsysteme in die personenbezogene Dienstleistungserbringung—Ergebnisse einer Delphi-Studie. In: Lebensqualität im Wandel von Demografie und Technik, Berlin: VDE-Verlag, (pp. 234–238), 2013.
Bröhl, C., Nelles, J., Brandl, C., Mertens, A., & Schlick, C. M. (2016). TAM reloaded: A technology acceptance model for human-robot cooperation in production systems. In C. Stephanidis (Ed.), HCI 2016 (Vol. 617, pp. 97–103). CCIS Cham: Springer.
Eysenbach, G., & Wyatt, J. (2002). Using the internet for surveys and health research. Journal of Medical Internet Research, 4(2).
Hsiao, C. (2007). Panel data analysis—advantages and challenges. TEST, 16(1), 1–22.
Kano, N., Seraku, N., Takahashi, F., & Tsuji, F. (1984). Attractive quality and must-be quality. Journal of the Japanese Society for Quality Control, 14(2), 147–156.
Levin, K. A. (2006). Study design III: Cross-sectional studies. Evidence-based Dentistry, 7(1), 24.
Mertens, A., Rasche, P., Theis, S., Bröhl, C., & Wille, M. (2017). Use of information and communication technology in healthcare context by older adults in Germany: Initial results of the Tech4Age long-term study. i-com, 16(2), 165–180.
Eysenbach, G., & Wyatt, J. (2002). Using the Internet for surveys and health research. Journal of Medical Internet Research, 4(2).
Rife, S. C., Cate, K. L., Kosinski, M., & Stillwell, D. (2016). Participant recruitment and data collection through Facebook: The role of personality factors. International Journal of Social Research Methodology, 19(1), 69–83.
Schneider, H. J. (1949). Voraussage durch Massenbefragung. Wirtschaftsdienst, 29(4), 22–26.
Sedgwick, P. (2014). Cross sectional studies: Advantages and disadvantages. BMJ: British Medical Journal, 348.
Theis, S., Rasche, P., Bröhl, C., Wille, M., & Mertens, A. (2017). User-driven semantic classification for the analysis of abstract health and visualization tasks. In V. G. Duffy (Ed.), DHM 2017 (Vol. 10287, pp. 297–305). LNCS Cham: Springer.
Topolovec-Vranic, J., & Natarajan, K. (2016). The use of social media in recruitment for medical research studies: A scoping review. Journal of Medical Internet Research: JMIR, 18(11), e286.
Visser, P. S., Krosnick, J. A., & Lavrakas, P. J. (2014). Survey research. In H. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (2nd ed, pp. 223–252). New York, NY: Cambridge University Press.
Wille, M., Theis, S., Rasche, P., Bröhl, C., Schlick, C., & Mertens, A. (2016). Best practices for designing electronic healthcare devices and services for the elderly. i-com, 15(1), 67–78.
Zhang, X., Kuchinke, L., Woud, M. L., Velten, J., & Margraf, J. (2017). Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Computers in Human Behavior, 71, 172–180.
Acknowledgements
This publication is part of the research project “TECH4AGE,” financed by the Federal Ministry of Education and Research (BMBF, under Grant No. 16SV7111) and promoted by VDI/VDE Innovation + Technik GmbH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mertens, A., Schäfer, K., Theis, S., Bröhl, C., Rasche, P., Wille, M. (2018). Mass Survey for Demand Analysis. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-01836-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01835-1
Online ISBN: 978-3-030-01836-8
eBook Packages: Computer ScienceComputer Science (R0)