[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mass Survey for Demand Analysis

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

  • 848 Accesses

Abstract

In the ongoing digitalization of society new technical systems and technologies are increasingly penetrating people’s everyday lives. In order to be able to analyze the resulting complex interactions and forms of networking, a participative approach is needed to identify the needs of these user groups. Empirical studies, e.g., mass studies, are important because it may be required that many stakeholders have to be questioned in a short period. In this article, various methodological approaches are presented using best practice examples to show the strengths and weaknesses of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bech, M., & Kristensen, M. (2009). Differential response rates in postal and Web-based surveys in older respondents. Survey Research Methods, 3(1), 1–6.

    Google Scholar 

  2. Best, S. J., & Krueger, B. J. (2004). Internet data collection, Quantitative applications in the social sciences (141st ed.). Thousand Oaks, California: Sage Publications.

    Book  Google Scholar 

  3. Bröhl, C., Mertens, A., Brandl, C., Mayer, M., & Schlick, C. (2013). Integration technischer Assistenzsysteme in die personenbezogene Dienstleistungserbringung—Ergebnisse einer Delphi-Studie. In: Lebensqualität im Wandel von Demografie und Technik, Berlin: VDE-Verlag, (pp. 234–238), 2013.

    Google Scholar 

  4. Bröhl, C., Nelles, J., Brandl, C., Mertens, A., & Schlick, C. M. (2016). TAM reloaded: A technology acceptance model for human-robot cooperation in production systems. In C. Stephanidis (Ed.), HCI 2016 (Vol. 617, pp. 97–103). CCIS Cham: Springer.

    Chapter  Google Scholar 

  5. Eysenbach, G., & Wyatt, J. (2002). Using the internet for surveys and health research. Journal of Medical Internet Research, 4(2).

    Article  Google Scholar 

  6. Hsiao, C. (2007). Panel data analysis—advantages and challenges. TEST, 16(1), 1–22.

    Article  MathSciNet  Google Scholar 

  7. Kano, N., Seraku, N., Takahashi, F., & Tsuji, F. (1984). Attractive quality and must-be quality. Journal of the Japanese Society for Quality Control, 14(2), 147–156.

    Google Scholar 

  8. Levin, K. A. (2006). Study design III: Cross-sectional studies. Evidence-based Dentistry, 7(1), 24.

    Article  MathSciNet  Google Scholar 

  9. Mertens, A., Rasche, P., Theis, S., Bröhl, C., & Wille, M. (2017). Use of information and communication technology in healthcare context by older adults in Germany: Initial results of the Tech4Age long-term study. i-com, 16(2), 165–180.

    Article  Google Scholar 

  10. Eysenbach, G., & Wyatt, J. (2002). Using the Internet for surveys and health research. Journal of Medical Internet Research, 4(2).

    Article  Google Scholar 

  11. Rife, S. C., Cate, K. L., Kosinski, M., & Stillwell, D. (2016). Participant recruitment and data collection through Facebook: The role of personality factors. International Journal of Social Research Methodology, 19(1), 69–83.

    Article  Google Scholar 

  12. Schneider, H. J. (1949). Voraussage durch Massenbefragung. Wirtschaftsdienst, 29(4), 22–26.

    Google Scholar 

  13. Sedgwick, P. (2014). Cross sectional studies: Advantages and disadvantages. BMJ: British Medical Journal, 348.

    Article  Google Scholar 

  14. Theis, S., Rasche, P., Bröhl, C., Wille, M., & Mertens, A. (2017). User-driven semantic classification for the analysis of abstract health and visualization tasks. In V. G. Duffy (Ed.), DHM 2017 (Vol. 10287, pp. 297–305). LNCS Cham: Springer.

    Chapter  Google Scholar 

  15. Topolovec-Vranic, J., & Natarajan, K. (2016). The use of social media in recruitment for medical research studies: A scoping review. Journal of Medical Internet Research: JMIR, 18(11), e286.

    Article  Google Scholar 

  16. Visser, P. S., Krosnick, J. A., & Lavrakas, P. J. (2014). Survey research. In H. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (2nd ed, pp. 223–252). New York, NY: Cambridge University Press.

    Google Scholar 

  17. Wille, M., Theis, S., Rasche, P., Bröhl, C., Schlick, C., & Mertens, A. (2016). Best practices for designing electronic healthcare devices and services for the elderly. i-com, 15(1), 67–78.

    Google Scholar 

  18. Zhang, X., Kuchinke, L., Woud, M. L., Velten, J., & Margraf, J. (2017). Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Computers in Human Behavior, 71, 172–180.

    Article  Google Scholar 

Download references

Acknowledgements

This publication is part of the research project “TECH4AGE,” financed by the Federal Ministry of Education and Research (BMBF, under Grant No. 16SV7111) and promoted by VDI/VDE Innovation + Technik GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mertens, A., Schäfer, K., Theis, S., Bröhl, C., Rasche, P., Wille, M. (2018). Mass Survey for Demand Analysis. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics