[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Perception Model for UAVs Landing Target Detection and Recognition

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

Abstract

Today, unmanned aerial vehicles (UAV) play an interesting role in the so-called Industry 4.0. One of many problems studied by companies and research groups are the sensing of the environment intelligently. In this context, we tackle the problem of autonomous landing, and more precisely, the robust detection and recognition of a unique landing target in an outdoor environment. The challenge is how to deal with images under non-controlled light conditions impacted by shadows, change of scale, perspective, vibrations, noise, blur, among others. In this paper, we introduce a robust unsupervised model allowing to detect and recognize a target, in a perceptual-inspired manner, using the Gestalt principles of non-accidentalness and grouping. Our model extracts the landing target contours as outliers using the RX anomaly detector and computing proximity and a similarity measure. Finally, we show the use of error correction Hamming code to reduce the recognition errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Identification number

References

  1. Araar, O., Aouf, N., Vitanov, I.: Vision based autonomous landing of multirotor UAV on moving platform. J. Intell. Robot. Syst. 85(2), 369–384 (2017)

    Article  Google Scholar 

  2. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)

    Article  Google Scholar 

  3. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Cervera, P.C.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sensors 2017, 3296874:1–3296874:13 (2017)

    Article  Google Scholar 

  4. Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2008). https://doi.org/10.1007/978-0-387-74378-3

    Book  MATH  Google Scholar 

  5. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science (New York, N.Y.) 315(5814), 972–976 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Furukawa, H.: Deep Learning for End-to-End Automatic Target Recognition from Synthetic Aperture Radar Imagery. arXiv:1801.08558 [cs], January 2018

  7. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lacroix, S., Caballero, F.: Autonomous detection of safe landing areas for an UAV from monocular images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  9. Lange, S., Sünderhauf, N., Protzel, P.: Autonomous landing for a multirotor UAV using vision. In: SIMPAR 2008 International Conference on Simulation, Modeling and Programming for Autonomous Robots, pp. 482–491 (2008)

    Google Scholar 

  10. Lee, J., Wang, J., Crandall, D., Šabanović, S., Fox, G.: Real-time, cloud-based object detection for unmanned aerial vehicles. In: 2017 First IEEE International Conference on Robotic Computing (IRC), pp. 36–43, April 2017

    Google Scholar 

  11. Lu, C.T., Chen, D., Kou, Y.: Multivariate spatial outlier detection. Int. J. Artif. Intell. Tools 13(04), 801–811 (2004)

    Article  Google Scholar 

  12. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207(1167), 187–217 (1980)

    Article  Google Scholar 

  13. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Petitot, J.: Neurogéométrie de la vision: modèles mathématiques et physiques des architectures fonctionnelles. Editions Ecole Polytechnique (2008)

    Google Scholar 

  15. Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990)

    Article  Google Scholar 

  16. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2010)

    Google Scholar 

  17. Wertheimer, M.: FormsUntersuchungen zur Lehre von der Gestalt II. Psycologische Forsch. 4, 301–350 (1923)

    Article  Google Scholar 

  18. Witkin, A.: Scale-space filtering: a new approach to multi-scale description. In: ICASSP 1984. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 9, pp. 150–153, March 1984

    Google Scholar 

  19. Yao, H., Yu, Q., Xing, X., He, F., Ma, J.: Deep-learning-based moving target detection for unmanned air vehicles. In: 2017 36th Chinese Control Conference (CCC), pp. 11459–11463, July 2017

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Mexican National Council for Science and Technology (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bazán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazán, E., Dokládal, P., Dokládalová, E. (2018). Unsupervised Perception Model for UAVs Landing Target Detection and Recognition. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics