[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DSL: Automatic Liver Segmentation with Faster R-CNN and DeepLab

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

Liver segmentation is a crucial step in computer-assisted diagnosis and surgical planning of liver diseases. However, it is still a quite challenging task due to four reasons. First, the grayscale of the liver and its adjacent organ tissues is similar. Second, partial volume effect makes the liver contour blurred. Third, most clinical images have serious pathology such as liver tumor. Forth, each person’s liver shape is discrepant. In this paper, we proposed DSL (detection and segmentation laboratory) method based on Faster R-CNN (faster regions with CNN features) and DeepLab. The DSL consists of two steps: to reduce the scope of subsequent liver segmentation, Faster R-CNN is employed to detect liver area. Next, the detection results are input to DeepLab for segmentation. This work is evaluated on two datasets: 3Dircadb and MICCAI-Sliver07. Compared with the state-of-the-art automatic methods, our approach has achieved better performance in terms of VOE, RVD, ASD and total score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Shaikhli, S.D.S., Yang, M.Y., Rosenhahn, B.: Automatic 3D liver segmentation using sparse representation of global and local image information via level set formulation. Computer Science (2015)

    Google Scholar 

  2. Campadelli, P., Casiraghi, E.: Liver segmentation from CT scans: a survey. In: WILF, pp. 520–528 (2007)

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Computer Science, pp. 357–361 (2014)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. (2016)

    Google Scholar 

  5. Chung, F., Delingette, H.: Regional appearance modeling based on the clustering of intensity profiles. Comput. Vis. Image Underst. 117(6), 705–717 (2013)

    Article  Google Scholar 

  6. Dawant, B.M., Li, R., Lennon, B., Li, S.: Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set. In: Workshop on 3D Segmentation in the Clinic (2007)

    Google Scholar 

  7. Dong, C., et al.: A knowledge-based interactive liver segmentation using random walks. In: International Conference on Fuzzy Systems and Knowledge Discovery, pp. 1731–1736 (2015)

    Google Scholar 

  8. Erdt, M., Steger, S., Kirschner, M., Wesarg, S.: Fast automatic liver segmentation combining learned shape priors with observed shape deviation. In: IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 249–254 (2010)

    Google Scholar 

  9. Gambino, O., et al.: Automatic volumetric liver segmentation using texture based region growing. In: International Conference on Complex, Intelligent and Software Intensive Systems, pp. 146–152 (2010)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  11. He, B., et al.: Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model. Med. Phys. 43(5), 2421–2434 (2016)

    Article  Google Scholar 

  12. Heimann, T., van Ginneken, B., Styner, M.A., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  13. Heimann, T., Meinzer, H.P., Wolf, I.: A statistical deformable model for the segmentation of liver CT volumes. In: MICCAI Workshop on 3D Segmentation in the Clinic (2010)

    Google Scholar 

  14. Jansen, J., Schreurs, R., Dubois, L., Maal, T.J.J., Gooris, P.J.J., Becking, A.G.: Orbital volume analysis: validation of a semi-automatic software segmentation method. Int. J. Comput. Assist. Radiol. Surg. 11(1), 11–18 (2015)

    Article  Google Scholar 

  15. Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: MICCAI Workshop On 3D Segmentation in the Clinic, pp. 109–116 (2008)

    Google Scholar 

  16. Kirschner, M.: The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. thesis, Technischen Universität Darmstadt (2013)

    Google Scholar 

  17. Li, G., Chen, X., Shi, F., Zhu, W., Tian, J., Xiang, D.: Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Trans. Image Process. 24(12), 5315 (2015)

    Article  MathSciNet  Google Scholar 

  18. Liao, M., et al.: Efficient liver segmentation in CT images based on graph cuts and bottleneck detection. Physica Med. 32(11), 1383 (2016)

    Article  Google Scholar 

  19. Linguraru, M.G., Richbourg, W.J., Watt, J.M., Pamulapati, V., Summers, R.M.: Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts. In: International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging, pp. 198–206 (2011)

    Google Scholar 

  20. Lu, F., Wu, F., Hu, P., Peng, Z., Kong, D.: Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12(2), 171–182 (2017)

    Article  Google Scholar 

  21. Lu, J., Shi, L., Deng, M., Yu, S.C.H., Heng, P.A.: An interactive approach to liver segmentation in CT based on deformable model integrated with attractor force. In: International Conference on Machine Learning and Cybernetics, pp. 1660–1665 (2011)

    Google Scholar 

  22. Meena, S., Palaniappan, K., Seetharaman, G.: Interactive image segmentation using elastic interpolation. In: IEEE International Symposium on Multimedia, pp. 307–310 (2016)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  24. Saddi, A.K., Rousson, M., Hotel, C.C., Cheriet, F.: Global-to-local shape matching for liver segmentation in CT imaging (2007)

    Google Scholar 

  25. Webster, N.J.G.: Alternative RNA splicing in the pathogenesis of liver disease. Front. Endocrinol. 8 (2017)

    Google Scholar 

  26. Wimmer, A., Soza, G., Hornegger, J.: A generic probabilistic active shape model for organ segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 26–33 (2009)

    Chapter  Google Scholar 

  27. Yan, J., Schwartz, L.H., Zhao, B.: Semiautomatic segmentation of liver metastases on volumetric CT images. Med. Phys. 42(11), 6283–6293 (2015)

    Article  Google Scholar 

  28. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 507–515 (2017)

    Google Scholar 

  29. Yang, X., et al.: A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points. Comput. Meth. Prog. Biomed. 113(1), 69–79 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, W., Zou, D., Yang, S., Shi, J. (2018). DSL: Automatic Liver Segmentation with Faster R-CNN and DeepLab. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics